3D Finite Element Analysis of a Contiguous Pile Wall

Source: 3D Finite Element Analysis of a Contiguous Pile Wall Source: RS3 | 3D Finite Element Software For Advanced Analysis | Rocscience 3D Finite Element Analysis of a Contiguous Pile Wall Introduction This article provides a brief summary of a 3D finite element analysis carried out using RS3 to model a contiguous pile retaining wall at the site of a proposed commercial development in the UK. The development site is located on sloping ground approximately 35 m from a motorway cutting. Due to the sloping topography of the site, cut and fill earthworks are to be undertaken to form a level development plateau upon which a large warehouse is to be built. This will require the construction of a circa 400 m long contiguous pile retaining wall to support the ground along the site’s upslope boundary where ground levels will be reduced by up to 8.4 m. Wall Design A plan showing the arrangement of the piles and the 2.0 m wide by 0.8 m deep capping beam is shown in Figure 1. The main 900 mm diameter piles are 17 m long and are staggered in a zigzag arrangement at 0.25 m offsets either side of the capping beam centerline. Interspersed mid-way between the main piles are 600 mm diameter infill piles. The infill piles are located along the capping beam centerline and are 11 m long. Figure 1: Pile and capping beam arrangement Ground Conditions The ground conditions are summarized in Figure 2 which shows a 2D section perpendicular to the wall alignment at the location where the retained height attains its maximum value of 8.4 m. The succession of strata comprises a veneer of clay-rich Glacial Till overlying Coal Measures bedrock. The Coal Measures bedrock is dominated by siltstone and mudstone and has been divided into three [...]

Parameters Variation Model Customization and Sensitivity Analyses

Source: Parameters Variation: Model Customization and Sensitivity Analyses Parameters Variation Model Customization and Sensitivity Analyses A well-known engineering challenge in the framework of finite element (FE) analysis-based design is the large number of input factors involved in geotechnical computational models. There is always a significant amount of uncertainties associated with the properties of geomaterials, being naturally highly heterogeneous materials. In the context of model calibration and validation, conducting a sensitivity analysis is very important. This can determine the key factors which govern the system and efficiently characterize the geotechnical variability for any considered design problem.   Powerful mechanisms for the consideration of parameter variation are also very interesting for speeding up FE model creation and automating results in post-processing. These are also quite useful in reducing model definition for specific types of engineering problems (excavation wall of a specific type under simple ground conditions, simple tunnel shape in uniform rock mass, etc.) to a limited number of parameters that can be inputted in a text file or Microsoft Excel spreadsheet without expert knowledge of the PLAXIS user interface and different modeling techniques and FE know-how. The sensitivity analysis and parameter variation tool in PLAXIS A sensitivity analysis determines how different values of an independent variable affect a particular dependent variable under a given set of assumptions. In other words, sensitivity analyses study how various sources of uncertainty in a mathematical model contribute to the model's overall uncertainty. The Sensitivity Analysis and Parameter Variation tool (see Figure 1) can be used to evaluate the influence of model parameters on calculation results for any particular PLAXIS FE model: The Select Parameters tab sheet will first provide information about all the parameters that can be changed to perform the sensitivity analysis. Available parameters include most model parameters of the data sets for soil and [...]

A Climate Change-Induced Disaster in Denali National Park

Source: A Climate Change-Induced Disaster in Denali National Park | Time The Times has recently showcased an article on the current rockslide situation in Denali National Park. The effects of climate change have been dramatic with the current melting of the permafrost. The National Parks Service has recently upped through gravel removal of the Pretty Rocks Landslide in an effort to keep up as the rapidly thawing permafrost picks up pace. Alaska is right now recognized as the country’s fastest-warming state. The landslide hit unprecedented speed 4 weeks ago causing the team to close the back half of the park weeks earlier than anticipated. This only signals bad news as reservations are canceled in the short term and the long term implications are yet unknown. “This is the canary in the coal mine for infrastructure disruption in Alaska,” says the Camp Denali lodge owner Simon Hamm. “If things continue on the path they’re on, it’s not going to just be Pretty Rock—it’s going to be half of the Alaskan highway system.” Rapid deterioration Denali National Park is one of the U.S.’s largest national parks at 6 million acres, and sits about four hours north of Anchorage. While the entrance to the park is certainly beautiful, many people prefer to hop on buses to access the park’s marquee attractions deep down its single 92-mile road: views of Mt. Denali (formerly Mt. McKinley), the highest peak in North America at 20,000 feet; the gleaming Wonder Lake; rolling mountainsides that contain an abundance of wildlife, including grizzly bears, moose, caribou and bighorn sheep. About halfway along the road lies the Pretty Rocks Landslide, a slowly sliding section of earth that acts more like a glacier than a rockfall. Since the 1960s, permafrost deep below the earth’s surface has thawed, causing the soil and [...]

Geotechnical Instrumentation and Monitoring Consumption Market Size to Witness Huge Growth by 2027 | By Top Leading Vendors – Keller, Fugro, Nova Metrix, Geokon, Geocomp, Sisgeo, Cowi – The Daily Chronicle

Source: Geotechnical Instrumentation and Monitoring Consumption Market Size to Witness Huge Growth by 2027 | By Top Leading Vendors – Keller, Fugro, Nova Metrix, Geokon, Geocomp, Sisgeo, Cowi – The Daily Chronicle

Adding a Soil Testing Service to Your Drilling Business

Are you a driller looking at adding a soil testing service to your business? If you’ve been in the drilling business for any length of time, or if you’ve been involved in drilling around sites that are being prepped for construction or development - you may have crossed paths with a Cone Penetration Test (CPT) operation. If you have been curious about this service, you probably noticed that the operating conditions of CPT are pretty comfortable. You may have also heard that the daily rates or rates charged per foot of depth for CPT are usually quite a bit better than what you can get for drilling. Adding soil testing services to your business can be a good way to diversify your workload and ensure a steady income for your business and your family. What you may not know, is that the skills you’ve acquired to drill are a good basis for entering the CPT business. What do you need to get started? A good place to start is to start comprehending the reasons why customers need a soil testing service and the basics of how this type of soil testing works. This will help you to start thinking about the needs in your area and the types of things you’ll need to learn in order to be successful in the business. Why a Soil Testing Service? When engineers are in the early stages of designing infrastructure, such as roads, bridges, or foundations for buildings, they need to know the characteristics of the ground that is going to be built on. Depending upon the type of construction, they may need to understand how soil, clay and rock are layered below the surface. This can help them to decide what the construction process will look like. For instance, will blasting or [...]

Why Would You Need a Track CPT Rig?

Vertek CPT wants to ensure that you have the right equipment to grow your business. As you are going through the CPT rig purchase process, we’ll have extensive conversations to ensure that we are both on the same page when it comes to where you will be testing, what types of tests you can most easily sell, and which rig or rigs will help you to make the most money. Track Rig Features As you look around our site, you’ll see that some rigs are built on tracks, as opposed to truck beds with wheels. As per with construction equipment, you might expect the tracked equipment to be larger, with CPT rigs the tracked units tend to be smaller. This is because tracked rig CPT platforms are designed to not only traverse and work in difficult terrains, but also to be highly maneuverable around obstacles such as trees, rocks and gulleys. Remember, CPT testing may be specified by your customer for pre-construction activities, meaning that it takes place on a site with little preparation. Having a highly maneuverable platform with low ground pressure can make the difference between you being able to win certain jobs and not. Track rigs are usually designed in order to distribute the weight of the rig over more square inches of contact area. This helps to minimize damage to sensitive areas as well as help the rig not get stuck in less than optimum ground conditions. The overall rig footprints are designed so that the units can be effectively trucked to sites within your service area. Track rigs are designed for deep pushes in tough geologies and the Vertek CPT tracked rigs push from about 10 tons up to 25 tons. With the right combination of weight, ease of maneuverability and set-up features, a tracked [...]

Measuring the Moisture Content of Soil Using CPT

Measuring soil moisture content can be important for a variety of reasons. In placing underground electrical equipment or digging tunnels, it can be essential to know exactly what soil moisture conditions look like at specific depths. Early CPT test procedures used the standard CPT output data of cone resistance, sleeve friction and friction ratio to identify all of the parameters underground. When it comes to soils that have some moisture content or are saturated, it can be helpful to use a boring rig to obtain soil samples at depth close to the first CPT sounding. This enables you to ‘calibrate’ your rig to the site to ensure that the interpretations of the test data are accurate. Because establishing subsurface moisture content can be safety-critical in certain cases, Cone Penetration Testing methodologies have evolved to provide relative soil moisture content data. It is now possible to measure soil moisture more directly at the cone head vs. inferring what the moisture might be through interpreted sounding data. One method of measuring the presence of water is with a ‘piezocone’. This is a CPT cone that is fitted with a device that measures pore pressure. As the cone penetrates into saturated soils, hydraulic (water) pressure is exerted on the instrumented cone. By watching this pressure increase and decrease as the cone is driven deeper into the ground, it is possible to measure the presence of moisture at depth. This type of approach is better suited to soil conditions in which it is expected for the soil to be fairly wet to saturated conditions. Another method of establishing the extent of the presence of water is by using electrical sensors such as a dielectric probe, which measures soil electrical conductivity. This can be a useful practice and can be helpful in soils with less [...]

LED Fluorescence Detectors and Fuel Fluorescence Detection (FFD)

Hydrocarbons: including gasoline, kerosene, diesel fuel, jet fuel, lubricating and hydraulic oils, and tars and asphalts contain Polycyclic Aromatic Hydrocarbons (PAH’s). Polycyclic Aromatic Hydrocarbons (PAH’s) distributed in soils and groundwater fluoresce when irradiated by ultraviolet light. Because different types of PAHs fluoresce at different wavelengths, each has its own fluorescence signature. Using an instrument that measures the intensity and wavelength of the fluoresced hydrocarbon enables the assessment of the hydrocarbons present. This makes UV Fluorescence a useful technology to use in characterizing surface, subsurface and groundwater hydrocarbon contamination. We call this Fuel Fluorescence Detection (FFD). What's the right fluorescence detector for you? Using handheld UV lights enables site technicians to establish the nature and distribution of contamination above ground. For surface spills such as what gathers along a shoreline or for surface based operations such as above ground tanks and pipes, this can be a useful place to start. For underground storage tanks a useful way to begin site characterization is with a subsurface probe. Engineers trying to establish the limits of the ‘plume’ or the depth of the contaminant as it travels underground. Plumes will extend outward, downward and upward depending upon factors such as the flow of groundwater and the confining layers of clay and rock. Leveraging the ability to generate and measure fluorescence underground requires a step up in technology. In the case of CPT, a UV light source is placed in the cone itself. Fiber-optic cables transmit the resulting fluorescence to the surface where the intensity and wavelength can be measured. Because of the efficiency of CPT, large and complex sites can be characterized quickly and efficiently. The data logs are available immediately to influence critical decision-making which can help to manage costs in the long term. For instance monitoring wells may need to be installed [...]

Ensuring That Your CPT Data is Correctly Reported and Interpreted

It is important to understand when interpreting CPT data the physics of how the data is produced. This will lead to a better appreciation of where CPT data should be validated with other types of tests in order to ensure that it is being correctly reported and interpreted. In CPT (Cone Penetration Testing), when the tip of the cone is being advanced, there is pressure exerted on the tip itself. This pressure is created from the resistance to downward force by whatever soil is resisting on the cone tip. However, this pressure is not simply exerted from the ground immediately in front of the tip. Rather, the cone forces the ground immediately in front of it to compress. This compression forces the ground in front of it to 'fail' that is, the soil cohesion is not sufficient to resist the tip load, and the soil compresses further down or moves out of the way down, sideways or a little bit away from the cone itself, upwards. Because of this movement and compression, the pressure exerted back on the cone tip is generated from a large area of soil below, around and a bit behind the cone tip itself. This means depending on soil stratification that the instruments in the tip sense soil resistance from around 5 or more cone diameters ahead and around the tip of the cone. Using a cone of 1.5 inches in diameter means that you are actually taking an average cone resistance measurement. This is sometimes called a 'tip influence zone'. If you are pushing through a sub-surface feature, such as a landslide slip face or a layer of softer clay that is a foot or less, it is quite possible to miss this feature entirely. In engineering speak, you might read something like 'exercise caution [...]

Testing Pavement Sections at Ohio University

Ohio Unversity Accelerated Pavement Tester in Action! In 1997 Vertek delivered our first of many Accelerated Transportation Loading Systems (ATLaS). Ohio University published this video, dated in 2012 of the pavement load tester in use at their Accelerated Pavement Load Facility. Common pavement tests include: Pavement coating lifetime analysis Experimental pavement fatigue estimation Pavement rutting Impact of temperature cycling on pavement Effects of wheel wander on pavement lifespan [/fusion_youtube] Though our designs have evolved since 1997 to better handle environmental and energy useage factors, many components of the above are still present on our current deliveries of pavement and bridge deck testers. These testers are designed to deliver actionable data regarding the lifespan and limits of road surfaces and pavement composition in shortened timespans. While this website is primary dedicated to our CPT business, Vertek's wealth of geotechnical manufacturing experience has led to additional focus on structural integrity fields such as load testing. See our ATLaS pavement and bridge load testing page for more information or to inquire.

Go to Top