University of Nevada, Reno scientists and engineers collaborating on seismic survey for earthquakes
Source: University of Nevada, Reno scientists and engineers collaborating on seismic survey for earthquakes | University of Nevada, Reno University of Nevada, Reno scientists and engineers install equipment at Reno Fire Department's Station 5 on Mayberry Drive as part of a seismic study using fiber-optic cable that runs six miles from downtown Reno to west of Reno. A team of scientists and engineers from the University of Nevada, Reno are installing earthquake sensors above ground along a six-mile stretch of an existing fiber-optic telecommunication cable buried under Reno to develop a rigorous and efficient system for subsurface imaging at the large scale, and detecting earthquakes using laser and fiber-optic technology. "We'll be recording seismic signals generated by passing planes, trains and automobiles along the six-mile stretch of currently unused, buried optical fiber that runs west from Virginia Street along California Avenue and on to Mayberry Drive," Scott Tyler, professor of geological sciences and a leading expert in fiber-optic/laser sensing systems, said. "As the vibrations from the transportation system pass through the underlying geology, it causes a very small change in the optical fiber’s length, which can be recorded from the start of the fiber on South Virginia Street, using a laser-based system called Distributed Acoustic Sensing or DAS." The team, led by Elnaz Seylabi, an assistant professor in the civil and environmental engineering department, is also installing three-component high-resolution seismometers along the cable in the study area to compare traditional methods with the new DAS technology that sends a pulse of laser light through the cable and measures the perturbations in the backscattered light from every point along the cable. The fiber optic system is sensitive enough to detect footsteps as well as jet airplanes that fly by. "Instead of using thousands of geophones to measure ground vibration [...]