CPT Dictionary: Overburden Stress

Overburden stress, also called vertical stress or overburden pressure, is the pressure imposed on a layer of soil by the weight of the layers on top of it. Overburden stress can cause errors or drift in CPT measurements, creating the need for correction factors in deeper tests depths and soft or fine-grained soils. However, overburden stress is also useful in determining the soil’s mechanical properties. In this blog, we’ll give an overview of the effect of overburden stress on CPT testing and what we can learn from it. The formula for overburden stress is given by: σvo = overburden stress ɤi = in situ density of soil layer hi = height of soil layer If it’s been a while since you’ve seen summation notation, this means that for each soil layer, you multiply the density of the layer by its height, then add all the resulting weights together until the pressure at the desired depth is known. In practice, the exact height and density of the soil layers at the test site are usually not known, so you may have to determine an average density based on what you do know about the geology of the area. CPT measurements of tip resistance, sleeve friction and pore pressure tend to increase along with increasing depth and increasing overburden stress. This effect can be seen in the graph at right. For this reason, we correct for overburden stress in calculating the normalized friction ratio and normalized tip resistance: to ensure that your data is consistent, it is important to use these parameters in deep tests and in soft, fine-grained soils, as we discussed in an earlier blog. In addition to normalized CPT parameters, overburden pressure allows us to understand and calculate the following engineering parameters: Effective overburden stress: the effective stress on [...]

Data Analysis With DCP

DCP (Dynamic Cone Penetration) Testing is a simple, reliable and cost-effective method to evaluate the in-situ stiffness profile of soil to a depth of about three feet. Its extreme portability, minimal disturbance of the subgrade, and ability to produce a continuous depth profile make it an ideal system for testing the mechanical properties of a pavement system during any stage of construction. The following simple equation is traditionally used to express the stiffness of a material from DCP test values: PR = Depth of Penetration / Number of Blows If you are new to DCP testing, you may be wondering whether the PR value can be used to calculate to other, more familiar geotechnical parameters, and whether DCP test results correlate well with those from other testing systems. Much has been researched and written on this subject, and the short answer is yes —DCP testing can easily and repeatably measure the same parameters as other in-situ and lab-based soil testing methods. For example, the California Bearing Ratio (CBR) test is another penetration test commonly used to measure the load bearing capacity of road beds. Perhaps you want to know the CBR values for a test site, but you have opted for a DCP system instead, due to its simplicity and lower cost. No problem! PR values can be converted to CBR values by applying a simple equation. This widely used conversion was developed by the U.S. Army Corps of Engineers and is used by many state DOTs and federal agencies: Log (CBR) = 2.465 - 1.12 Log (PR) This calculation and many others can be performed automatically by a state-of-the-art DCP setup. The Vertek SmartDCP kit can be operated and transported by a single user by hand, and provides instantaneous data collection and graphing capabilities via smartphone app. Data can [...]

Go to Top