Project removes old, disused dams to make healthier waterways

Source: Project removes old, disused dams to make healthier waterways - VTDigger Seen through the window of Patty Smith’s home in East Bethel, James Rogers, left, and Fran Rhynhart, right, watch as Ben Canonica, of Canonica Farm and Forest, makes a buffer to protect the bank of the Second Branch of the White River while preparing to remove the Hyde Dam on Tuesday, Sept. 15. “As kids, this was our playground,” said Rhynhart. “All the East Bethel village kids would swim here.” Photo by James M. Patterson/Valley News EAST BETHEL — A yellow excavator ambled over the uneven bed of the Second Branch of the White River as it rearranged boulders above the Hyde Dam earlier this month. Within weeks, the dam will be gone, opening 60 miles of waterways for fish passage. From the 1700s to the 1950s, hydropower ruled and the Hyde Dam in turn gave life to a sawmill, a gristmill, a creamery and a woolen mill that employed over 30 workers in 1860. The current dam replaced an older dam destroyed in what is known as the Great Vermont Flood of 1927. These days, industry has departed from the Second Branch. A half-acre plot of empty land on the north side of the dam gives no hint of the artifacts of production buried below. The mill that leans on the southern edge of the dam is now a home. Conservation nonprofits and state agencies worked together to remove the dam, part of a statewide effort to remove out-of-use dams to improve rivers for both wildlife and people. Greg Russ, a watershed restoration coordinator at the White River Partnership who is overseeing the project, estimated that it will cost anywhere between $120,000 and $150,000. He listed many reasons to remove the dam, for both the [...]

UNH receives $1.8 million grant to study road resilience and flooding

Source: UNH receives $1.8 million grant to study road resilience and flooding DURHAM — After a summer of high heat, steady sea level rise and devastating hurricanes like Hurricane Ida, which produced record amounts of rainfall causing destructive and deadly flooding in the Northeast and the Gulf Coast, coastal roads have continued to take a severe beating resulting in endless wear and tear. Because these roadways have become increasingly vulnerable, the National Oceanic and Atmospheric Administration (NOAA) has awarded a $1.8 million grant to researchers at the University of New Hampshire to study how and why coastal hazards like excessive flooding are causing roads to crack and crumble and find ways to protect them. “We’re trying to better understand the causal links of not only the extreme events but also the gradual changes in sea level rise that can increase the rate of damage to pavement and trigger failures that require major road reconstruction,” said Jo Sias, professor of civil and environmental engineering. “We’re looking at storm surges and wave action but also factors like the amount of time the pavement is under water.” The focus of the project is to understand the combined hazards of overtopping and subsurface moisture – flooding from above and below the road. UNH researchers – and their partners at the University of South Alabama and the Rockingham Planning Commission - will develop a number of hydrodynamic models that can analyze fluids in motion. They will use new data collected in the field as well as historical information to create high-resolution models to study groundwater and pavement as well as perform an adaptation impact assessment to develop a toolkit to help assess the vulnerability of roadways to flooding hazards. Researchers say that while engineers have investigated these impacts independently, an approach is needed that combines [...]

UD researchers study climate change impacts on soils at military installations

Source: The Ground Underfoot - Civil and Environmental Engineering UD researchers study climate change impacts on soils at military installations We walk over it, drive over it and build on it. Yet, it is probably safe to say, most of us rarely think about the ground beneath our feet. Underneath the grass, concrete, asphalt and other materials in our built environment, however, soil provides structure and stability for what lies above. The United States military wants to understand the role that climate impacts, such as flooding, storm surge or sea level rise, will have on soils at its coastal military bases and facilities, which are critical to national security. Soil conditions can affect the integrity of the ground underpinning buildings, roads, bridges and more. For example, if a soil’s pH were to rise significantly, due to increased salt content-containing ions such as sodium from storm surge, it could create saline conditions that could hamper the ground’s ability to support this necessary infrastructure. Understanding these threats will enable faster and more accurate routing and maneuverability for U.S. forces. The Delaware Environmental Institute (DENIN) is collaborating with the Engineer Research and Development Center (ERDC) of the U.S. Army Corps of Engineers and Louisiana State University to understand how vulnerable military installations along coasts may be affected by soil changes due to sea level rise and coastal flooding. DENIN has received $3.79 million in first- and second-year funding from the U.S. Department of Defense to start this work, and is eligible for an additional $3.82 million in continued funding over the following two years. Led by DENIN Director Don Sparks, Unidel S. Hallock du Pont Chair of Soil and Environmental Chemistry in UD’s Department of Plant and Soil Sciences, the UD effort includes interdisciplinary collaboration with Yan Jin, Edward F. and Elizabeth Goodman Rosenberg Professor [...]

Parameters Variation Model Customization and Sensitivity Analyses

Source: Parameters Variation: Model Customization and Sensitivity Analyses Parameters Variation Model Customization and Sensitivity Analyses A well-known engineering challenge in the framework of finite element (FE) analysis-based design is the large number of input factors involved in geotechnical computational models. There is always a significant amount of uncertainties associated with the properties of geomaterials, being naturally highly heterogeneous materials. In the context of model calibration and validation, conducting a sensitivity analysis is very important. This can determine the key factors which govern the system and efficiently characterize the geotechnical variability for any considered design problem.   Powerful mechanisms for the consideration of parameter variation are also very interesting for speeding up FE model creation and automating results in post-processing. These are also quite useful in reducing model definition for specific types of engineering problems (excavation wall of a specific type under simple ground conditions, simple tunnel shape in uniform rock mass, etc.) to a limited number of parameters that can be inputted in a text file or Microsoft Excel spreadsheet without expert knowledge of the PLAXIS user interface and different modeling techniques and FE know-how. The sensitivity analysis and parameter variation tool in PLAXIS A sensitivity analysis determines how different values of an independent variable affect a particular dependent variable under a given set of assumptions. In other words, sensitivity analyses study how various sources of uncertainty in a mathematical model contribute to the model's overall uncertainty. The Sensitivity Analysis and Parameter Variation tool (see Figure 1) can be used to evaluate the influence of model parameters on calculation results for any particular PLAXIS FE model: The Select Parameters tab sheet will first provide information about all the parameters that can be changed to perform the sensitivity analysis. Available parameters include most model parameters of the data sets for soil and [...]

A Climate Change-Induced Disaster in Denali National Park

Source: A Climate Change-Induced Disaster in Denali National Park | Time The Times has recently showcased an article on the current rockslide situation in Denali National Park. The effects of climate change have been dramatic with the current melting of the permafrost. The National Parks Service has recently upped through gravel removal of the Pretty Rocks Landslide in an effort to keep up as the rapidly thawing permafrost picks up pace. Alaska is right now recognized as the country’s fastest-warming state. The landslide hit unprecedented speed 4 weeks ago causing the team to close the back half of the park weeks earlier than anticipated. This only signals bad news as reservations are canceled in the short term and the long term implications are yet unknown. “This is the canary in the coal mine for infrastructure disruption in Alaska,” says the Camp Denali lodge owner Simon Hamm. “If things continue on the path they’re on, it’s not going to just be Pretty Rock—it’s going to be half of the Alaskan highway system.” Rapid deterioration Denali National Park is one of the U.S.’s largest national parks at 6 million acres, and sits about four hours north of Anchorage. While the entrance to the park is certainly beautiful, many people prefer to hop on buses to access the park’s marquee attractions deep down its single 92-mile road: views of Mt. Denali (formerly Mt. McKinley), the highest peak in North America at 20,000 feet; the gleaming Wonder Lake; rolling mountainsides that contain an abundance of wildlife, including grizzly bears, moose, caribou and bighorn sheep. About halfway along the road lies the Pretty Rocks Landslide, a slowly sliding section of earth that acts more like a glacier than a rockfall. Since the 1960s, permafrost deep below the earth’s surface has thawed, causing the soil and [...]

Geotechnical Instrumentation and Monitoring Consumption Market Size to Witness Huge Growth by 2027 | By Top Leading Vendors – Keller, Fugro, Nova Metrix, Geokon, Geocomp, Sisgeo, Cowi – The Daily Chronicle

Source: Geotechnical Instrumentation and Monitoring Consumption Market Size to Witness Huge Growth by 2027 | By Top Leading Vendors – Keller, Fugro, Nova Metrix, Geokon, Geocomp, Sisgeo, Cowi – The Daily Chronicle

MUD ROTARY DRILLING VS. CPT

Mud Rotary Drilling and Cone Penetration Testing (CPT) both provide reliable options for gaining subsurface information. In fact, the two are even compatible – many organizations that order drilling services, such as mud rotary drilling are also using CPT for their operations. Mud Rotary Drilling Mud rotary drilling is a versatile and dependable method for geological drilling operations. It is most commonly used to create a hole that will then be used for water well, seismic testing and commercial drilling operations. The mud rotary drilling functions with a drill-bit that is attached to a drill-rod that rotates into a borehole. This is done while pumping a drill mud that contains bentonite or polymer slurry into the borehole. Once this operation is complete, the drilling mud will circulate into a mud pit where the remaining residue in the borehole caused by drilling will then come out and be reused. This process is done without any effort from the drilling operators, and speeds up the drilling by removing any potential obstacles. Cone Penetration Testing (CPT) Cone Penetration Testing (CPT) is the use of a hardened cone shape that is pushed into the ground to substantial depths. The cone is pushed using steel rods that are able to be connected to each other as the depth increases. A dominant hydraulic ram is used to produce a considerable amount of downward force to facilitate the cone to penetrate soft soils, sand and clay. Though both provide suitable options for obtaining subsurface information, there are many benefits to using CPT over drilling. First off, CPT is a faster, less expensive option that also provides immediate results on site. CPT can also point to where rotary mud drilling will be required which is typically because of subsurface conditions or where more sampling should be done. CPT [...]

4 Types of Geotechnical Testing: What is the Best Option for You?

Geo-technical tests are performed by geo-technical engineers, geo-technical technicians or engineering geologists to understand the characteristics such as the physical properties that exist underneath a work site. Geo-technical testing will include a walk around of the surface conditions as well as one or more of a variety of tests. Tests generally fall into 4 categories, test pits, trenching, boring and in-situ testing. Test Pits Test pits are much like you would expect, a pit is dug either manually or with an excavator in order to reveal the sub-surface conditions to the depth desired. Trenching Trenching is similar to Test pits except that in this case, the pit is elongated over some distance in order to establish how the sub-surface conditions change over various parts of the work site. A range of soil samplers can be used to extract test samples including shovels, hand-driven augers, split-spoon samplers, modified California samplers and Shelby tube samplers. Boring Borings, usually small-diameter borings, provide the opportunity to physically remove soil or rock samples for testing. Borings provide the advantage of letting you ‘see’ the actual materials, but for certain types of soils, the very act of boring can disturb the soil conditions and the samples extracted may not represent what the conditions will actually be for building and supporting structures since it is unscientific and void of actionable data. Generally, soil samples from the above tests are taken to a lab where they are evaluated. In-Situ Testing In-situ (in the situation, or at site) testing methods include penetration tests such as Standard Penetration Tests (SPT), which penetrate via drilling, and various Cone Penetration Tests, which penetrate via direct push . These tests measure the physical properties of the subsurface soil directly, without removal. This provides the advantages of generating a more accurate reflection of conditions [...]

Standard Penetration Test (SPT) a Basic Soil Testing Procedure

A widely used soil testing procedure is the Standard Penetration Test (SPT). This test is still used because of it's simplicity and low cost. It can provide useful information in very specific types of soil conditions, but is not as accurate as a Cone Penetration Test. Here's more information about this basic soil testing procedure. For this test, a sample tube, which is thick walled to endure the test environment is placed at the bottom of a borehole. A heavy slide hammer (140 lbs) is dropped repeatedly 30 inches onto the top of the sample tube, driving it into the soil being tested. The operation entails the operator counting the number of hammer strikes it takes to drive the sample tube 6 inches at a time. Each test drives the sample tube up to 18 inches deep. It is then extracted and if desired a sample of the soil is pulled from the tube. The borehole is drilled deeper and the test is repeated. Often soil recovery is poor and counting errors per interval may occur. The number of hammer strikes it takes for the tube to penetrate the second and third 6 inch depth is called the 'standard penetration resistance', or otherwise called the 'N-value'. The standard penetration resistance offers a gauge of the soil density of soils which are hard to pull up with simply a borehole sampling approach. You can imagine pushing a sample tube into gravel, sand or silt and struggling to recover samples that are useful for analysis. Coupling the standard penetration test with borehole drilling and sampling can be an improvement for understanding certain soil types underground. This basic soil testing procedure gives reasonably consistent results in fine-grained sands and is not as consistent in coarse sands or clays. It can be useful in [...]

See the Vertek CPT Lightweight Portable CPT Push System in Action!

At Vertek CPT we love to develop innovative, yet practical CPT solutions with real ROI. There are many situations where an ultra-mobile, yet reliable CPT push system makes a lot of sense. In areas where it is difficult to get rig-based CPT equipment into place, maybe due to the terrain, soil conditions or distance from the nearest road, a CPT system that can be carried and operated by a small crew makes sense. Maximize Your Soil Testing Service Vertek's 10 Ton Portable Cone Penetrometer Test (CPT) hydraulic load frame is the lightest, smallest, most portable hydraulic CPT unit available. The hydraulic power pack and the hydraulic cylinders are independent and coupled by hydraulic quick-disconnects. The aluminum twin cylinders and power pack weigh only 195 kg (430 lbs) and 160 kg (355 lbs) respectively. Even within this lightweight form-factor, the unit still pushes up to 10 tons, meaning that you can reach the depths necessary for many types of tests. After setting 4 sturdy augers with the included drive unit and hand tools as simple as a tape measure, you are ready to mount the unit and start pushing. You can see how easy transportation, set-up, operation and tear-down are here: [/fusion_youtube]

Go to Top