## CPT Dictionary: Overburden Stress

Overburden stress, also called vertical stress or overburden pressure, is the pressure imposed on a layer of soil by the weight of the layers on top of it. Overburden stress can cause errors or drift in CPT measurements, creating the need for correction factors in deeper tests depths and soft or fine-grained soils. However, overburden stress is also useful in determining the soilâ€™s mechanical properties. In this blog, weâ€™ll give an overview of the effect of overburden stress on CPT testing and what we can learn from it. The formula for overburden stress is given by: Ïƒvo = overburden stress É¤i = in situ density of soil layer hi = height of soil layer If itâ€™s been a while since youâ€™ve seen summation notation, this means that for each soil layer, you multiply the density of the layer by its height, then add all the resulting weights together until the pressure at the desired depth is known. In practice, the exact height and density of the soil layers at the test site are usually not known, so you may have to determine an average density based on what you do know about the geology of the area. CPT measurements of tip resistance, sleeve friction and pore pressure tend to increase along with increasing depth and increasing overburden stress. This effect can be seen in the graph at right. For this reason, we correct for overburden stress in calculating the normalized friction ratio and normalized tip resistance: to ensure that your data is consistent, it is important to use these parameters in deep tests and in soft, fine-grained soils, as we discussed in an earlier blog. In addition to normalized CPT parameters, overburden pressure allows us to understand and calculate the following engineering parameters: Effective overburden stress: the effective stress on [...]