Going Deep to Anchor Pump Stations

Source: Going Deep to Anchor Pump Stations | WaterWorld Prime contractor Lakeshore Engineering used a crane with rigging to lower the Beretta T46 Drilling Rig into the excavation as UMA’s team provided direction. You need to build a stable foundation for improvements to a pump station but you’re located in a five-foot water table within proximity to a creek. How do you keep the foundation from rising? Georgia isn't the only place that struggles with a high water table. California, Arkansas, Texas, Nebraska, and Idaho all have large amount of groundwater. One Georgia county’s engineer chose to pin it down with rock anchors with the help of UMA Geotechnical Construction. Cherokee County Water and Sewerage Authority outsourced this pump station improvement project to Atlanta-based Lakeshore Engineering, a heavy civil contractor that focuses on industrial, municipal, and environmental projects. UMA served as the geotechnical subcontractor. Located within proximity to Blankets Creek in Canton, Georgia, the water table is known to fluctuate. UMA’s sole function was to install a rock anchor system to keep the pump station’s concrete slab pinned down. The components to be built on top of the slab would be a diesel engine-driven centrifugal pump and a concrete cast-in-place emergency storage tank. “The rock anchors are there for when the structure is empty,” explains UMA’s senior engineer and estimating manager Mitch Crayton. “When it’s empty and the groundwater table is above the bottom of the structure, if the rock anchors aren't there, it could push up out of the ground like a boat. These buoyant forces are exactly what the rock anchors are there to resist.” Working Down in the Hole One of the biggest challenges for UMA’s team was working in an excavation that was 23 feet deep and 56 feet wide. Lakeshore Engineering had excavated [...]

Microbial material modification helps to control frost heave and saline soil solidification

Source: Microbial material modification helps to control frost heave and saline soil solidification Chinese researchers recently conducted a study on process of biogas generation improving physical and mechanical properties of soil. A research team led by Sheng Yu from the Northwest Institute of Eco-Environmental Resources (NIEER) of the Chinese Academy of Sciences (CAS), together with their colleagues from Southeast University, has implanted Pseudomonas Stutzeri in the soil pores and induced it to produce nitrogen bubbles, and they also analyzed the influence mechanism of mitigation of sand liquefaction using biogas bubbles. In the natural environment, there are many microorganisms in rock and soil masses, and its metabolic activities will change physical and mechanical properties of rock and soil. These microbial activities can be controlled, enhanced and used to solve geotechnical problems, and such methods have been named as biogeotechnologies. As an emerging interdisciplinary field, it has developed rapidly in recent years due to its advantages of low carbon and friendly environment. From the perspective of practical application, biogeotechnologies can be used for rock and soil reinforcement, sealing of water leakage, prevention of sand liquefaction, soil erosion resistance control, and contaminated soil treatment and so on. Based on the above research results, the NIEER research group is exploring to apply biogeotechnologies to frost heave control and saline soil solidification, and has achieved some preliminary results. In this study, the researchers applied biogas generation process to soil frost heaving treatment, and studied improvement of biogas production performance under low temperature conditions. Results showed that sealing effect of bubbles and microorganisms on the water migration path can reduce soil permeability coefficient by one order of magnitude. Besides, they also introduced biomineralization to solve the prominent problem of saline soil with high chloride content in Northwestern China. Based on excellent curing effect, they analyzed the deterioration mechanism of [...]

New Estimate Makes Groundwater Earth’s Largest Water Reservoir on Land

Source: New Estimate Makes Groundwater – Not Ice Sheets – Earth’s Largest Water Reservoir on Land – Leak Herald Hot springs, which can source deep groundwater, are one of the places on the surface where there is evidence of rainwater circulating to depths of two kilometers and deeper. In the states, the top places for finding groundwater are Mississippi, Kansas, Arkansas, Nebraska, and South Dakota. New research doubles volume of salty water two to 10 kilometers beneath the surface that could store waste fluids, sequester carbon, and direct our search for extraterrestrial life. New research more than doubles the estimated volume of ancient, salty groundwater stored deep within Earth’s crust. Around 24 million cubic kilometers (5.8 cubic miles) of groundwater reside within the top two kilometers (1.2 miles) of Earth’s crust. This shallow groundwater is what we use for drinking and irrigation, and it’s mostly freshwater. But below that are vast reservoirs of brine, some of it hundreds of millions to more than a billion years old, locked away in the rocks. The question was: How much is there? A new study estimates there are around 20 million cubic kilometers of deep groundwater, or enough to fill around 4,800 Grand Canyons. Combined with previous estimates of shallower groundwater, the new research finds underground water is the largest reservoir of water on land, measuring 44 million cubic kilometers and surpassing the volume of Earth’s ice sheets. “This estimate expands our conceptual and practical understanding of the amount of water that Earth holds, and it adds a whole different dimension to the hydrologic cycle,” said Grant Ferguson, a hydrogeologist at the University of Saskatchewan who was lead author of the new study in the AGU journal Geophysical Research Letters, which publishes high-impact, short-format reports with immediate implications spanning all Earth and space sciences. [...]

Europe on course for healthier, more sustainable soil

Source: On course for healthier, more sustainable soil On course for healthier, more sustainable soil Soil is home to about a quarter of all living species. Credit: Amadeu Biasco, Shutterstock If we want to transition to a greener, healthier and more climate resilient Europe, it is important to ensure our soils are in good condition. However, the quality of soils is worsening because of unsustainable management practices, depletion of resources, climate change and pollution. Soil hosts a quarter of our planet's biodiversity and is home to about a quarter of all living species. But how many of us give this precious resource a second thought? We should, because soil directly or indirectly produces about 95% of our food. Soil is important in so many other ways, too. It provides us with raw materials to fight diseases and ecosystem services that purify our drinking water, lower the risk of floods and droughts, and store huge amounts of carbon to alleviate climate change. Storehouse of life Soil biodiversity is the life that exists within the soil, from bacteria to earthworms. These living organisms keep soil healthy and fertile. Soil biodiversity is key to meeting European Green Deal objectives such as climate neutrality, biodiversity restoration, zero pollution, healthy and sustainable food systems, and a resilient environment. The EU wants to lead the transition towards healthy soils for food, people, nature and the climate by 2030. One problem is that about 970 million tons of soil is lost to erosion each year in Europe. If this underground treasure is so important to us, then why are we allowing it to be destroyed? To repair or reverse the damage to soil's rich yet fragile habitat takes decades—even centuries. We need to preserve the quality of soil before it is too late. Soil health is a major concern for the commission. It [...]

International Conference on Earthquake Geotechnical Engineering ICEGE in February 2023 in Paris

Source: International Conference on Earthquake Geotechnical Engineering ICEGE in February 2023 in Paris The International Research Conference Aims and Objectives The International Research Conference is a federated organization dedicated to bringing together a significant number of diverse scholarly events for presentation within the conference program. Events will run over a span of time during the conference depending on the number and length of the presentations. With its high quality, it provides an exceptional value for students, academics and industry researchers. International Conference on Earthquake Geotechnical Engineering aims to bring together leading academic scientists, researchers and research scholars to exchange and share their experiences and research results on all aspects of Earthquake Geotechnical Engineering. It also provides a premier interdisciplinary platform for researchers, practitioners and educators to present and discuss the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of Earthquake Geotechnical Engineering Call for Contributions Prospective authors are kindly encouraged to contribute to and help shape the conference through submissions of their research abstracts, papers and e-posters. Also, high quality research contributions describing original and unpublished results of conceptual, constructive, empirical, experimental, or theoretical work in all areas of Earthquake Geotechnical Engineering are cordially invited for presentation at the conference. The conference solicits contributions of abstracts, papers and e-posters that address themes and topics of the conference, including figures, tables and references of novel research materials. Guidelines for Authors Please ensure your submission meets the conference's strict guidelines for accepting scholarly papers. Downloadable versions of the check list for Full-Text Papers and Abstract Papers. Please refer to the Paper Submission Guideline, Abstract Submission Guideline and Author Information before submitting your paper. Conference Proceedings All submitted conference papers will be blind peer reviewed by three competent reviewers. The peer-reviewed conference proceedings are indexed in the Open Science Index, Google Scholar, Semantic Scholar, Zenedo, OpenAIRE, BASE, WorldCAT, Sherpa/RoMEO, and [...]

Breaking Uncommon Ground in the Kansas Countryside

Source: Breaking Uncommon Ground in the Kansas Countryside - Alpha-Omega Geotech, Inc. Look beyond I-435 to the west of Kansas City’s urban core and you’ll see a surge of new commercial development taking shape. It’s not all typical, flat farmland and turning it into opportunity requires a strategic approach. Before you put together plans for a construction project, consider a few pointers based on our experience. Don’t Be Surprised by a Predictably Unpredictable Subgrade. Be careful not to make assumptions about what’s just below the surface and deeper down, especially along K-10 in the vicinity of Lenexa. Every potential build site is different to some degree and variations from site to site can be substantial. Much of the landscape is hilly, and history has left behind miscellaneous man made factors that will impact everything from site selection to construction. Decades of variables ranging from undocumented subgrade material, buried trees and buried gravel roads to improperly filled farm ponds lurk underground, even in areas that appear to be untouched. In addition, old limestone mines abandoned as far back as the 1980s wind through the area and present ongoing challenges for developers. The proximity of mines isn’t necessarily a deal breaker when it comes to project site selection, but you’ll need to clearly understand the limitations of the subgrade above and around them. You’ll also need to be on the lookout for mine spoils material carved out over the years and buried for disposal. Uncovering subgrade wildcards and narrowing site selection is only possible through an extensive investigation. A precise boring plan with thorough soil testing will be critical in the hunt for a project site that’s feasible in context of your timeline and budget. Make sure your geotechnical engineering partner knows exactly how you expect foundations to perform so that they can pinpoint [...]

UD researchers study climate change impacts on soils at military installations

Source: The Ground Underfoot - Civil and Environmental Engineering UD researchers study climate change impacts on soils at military installations We walk over it, drive over it and build on it. Yet, it is probably safe to say, most of us rarely think about the ground beneath our feet. Underneath the grass, concrete, asphalt and other materials in our built environment, however, soil provides structure and stability for what lies above. The United States military wants to understand the role that climate impacts, such as flooding, storm surge or sea level rise, will have on soils at its coastal military bases and facilities, which are critical to national security. Soil conditions can affect the integrity of the ground underpinning buildings, roads, bridges and more. For example, if a soil’s pH were to rise significantly, due to increased salt content-containing ions such as sodium from storm surge, it could create saline conditions that could hamper the ground’s ability to support this necessary infrastructure. Understanding these threats will enable faster and more accurate routing and maneuverability for U.S. forces. The Delaware Environmental Institute (DENIN) is collaborating with the Engineer Research and Development Center (ERDC) of the U.S. Army Corps of Engineers and Louisiana State University to understand how vulnerable military installations along coasts may be affected by soil changes due to sea level rise and coastal flooding. DENIN has received $3.79 million in first- and second-year funding from the U.S. Department of Defense to start this work, and is eligible for an additional $3.82 million in continued funding over the following two years. Led by DENIN Director Don Sparks, Unidel S. Hallock du Pont Chair of Soil and Environmental Chemistry in UD’s Department of Plant and Soil Sciences, the UD effort includes interdisciplinary collaboration with Yan Jin, Edward F. and Elizabeth Goodman Rosenberg Professor [...]

Parameters Variation Model Customization and Sensitivity Analyses

Source: Parameters Variation: Model Customization and Sensitivity Analyses Parameters Variation Model Customization and Sensitivity Analyses A well-known engineering challenge in the framework of finite element (FE) analysis-based design is the large number of input factors involved in geotechnical computational models. There is always a significant amount of uncertainties associated with the properties of geomaterials, being naturally highly heterogeneous materials. In the context of model calibration and validation, conducting a sensitivity analysis is very important. This can determine the key factors which govern the system and efficiently characterize the geotechnical variability for any considered design problem.   Powerful mechanisms for the consideration of parameter variation are also very interesting for speeding up FE model creation and automating results in post-processing. These are also quite useful in reducing model definition for specific types of engineering problems (excavation wall of a specific type under simple ground conditions, simple tunnel shape in uniform rock mass, etc.) to a limited number of parameters that can be inputted in a text file or Microsoft Excel spreadsheet without expert knowledge of the PLAXIS user interface and different modeling techniques and FE know-how. The sensitivity analysis and parameter variation tool in PLAXIS A sensitivity analysis determines how different values of an independent variable affect a particular dependent variable under a given set of assumptions. In other words, sensitivity analyses study how various sources of uncertainty in a mathematical model contribute to the model's overall uncertainty. The Sensitivity Analysis and Parameter Variation tool (see Figure 1) can be used to evaluate the influence of model parameters on calculation results for any particular PLAXIS FE model: The Select Parameters tab sheet will first provide information about all the parameters that can be changed to perform the sensitivity analysis. Available parameters include most model parameters of the data sets for soil and [...]

A Climate Change-Induced Disaster in Denali National Park

Source: A Climate Change-Induced Disaster in Denali National Park | Time The Times has recently showcased an article on the current rockslide situation in Denali National Park. The effects of climate change have been dramatic with the current melting of the permafrost. The National Parks Service has recently upped through gravel removal of the Pretty Rocks Landslide in an effort to keep up as the rapidly thawing permafrost picks up pace. Alaska is right now recognized as the country’s fastest-warming state. The landslide hit unprecedented speed 4 weeks ago causing the team to close the back half of the park weeks earlier than anticipated. This only signals bad news as reservations are canceled in the short term and the long term implications are yet unknown. “This is the canary in the coal mine for infrastructure disruption in Alaska,” says the Camp Denali lodge owner Simon Hamm. “If things continue on the path they’re on, it’s not going to just be Pretty Rock—it’s going to be half of the Alaskan highway system.” Rapid deterioration Denali National Park is one of the U.S.’s largest national parks at 6 million acres, and sits about four hours north of Anchorage. While the entrance to the park is certainly beautiful, many people prefer to hop on buses to access the park’s marquee attractions deep down its single 92-mile road: views of Mt. Denali (formerly Mt. McKinley), the highest peak in North America at 20,000 feet; the gleaming Wonder Lake; rolling mountainsides that contain an abundance of wildlife, including grizzly bears, moose, caribou and bighorn sheep. About halfway along the road lies the Pretty Rocks Landslide, a slowly sliding section of earth that acts more like a glacier than a rockfall. Since the 1960s, permafrost deep below the earth’s surface has thawed, causing the soil and [...]

Geotechnical Instrumentation and Monitoring Consumption Market Size to Witness Huge Growth by 2027 | By Top Leading Vendors – Keller, Fugro, Nova Metrix, Geokon, Geocomp, Sisgeo, Cowi – The Daily Chronicle

Source: Geotechnical Instrumentation and Monitoring Consumption Market Size to Witness Huge Growth by 2027 | By Top Leading Vendors – Keller, Fugro, Nova Metrix, Geokon, Geocomp, Sisgeo, Cowi – The Daily Chronicle

Go to Top