Intro to CPTu: What Can You Learn From Pore Pressure Data?

The most basic CPT tests classify soil based on tip resistance and sleeve friction measurements. In coarse soils and shallow testing depths, this data may be sufficient to accurately characterize the soil behavior. However, most modern CPT cones incorporate a third measurement: pore water pressure. What does this measurement mean and how can it add to our understanding of soil behavior? Pore pressure is simply a measure of the in-situ groundwater pressure, i.e. the water pressure in the “pores” between soil grains. This data is used to determine the compressibility and permeability of the soil, as well as indicating groundwater conditions. It is used to correct or “normalize” the sleeve friction and tip resistance readings in the presence of in-situ moisture and overburden stress. This is especially important in soft, fine-grained soils where in-situ moisture takes longest to dissipate, and in tests at depths greater than 100 feet. A CPT cone that is equipped with one or more pore pressure sensors is called a piezocone, and a CPT test using a piezocone is often indicated with the abbreviation CPTu. Piezocones may have between one and three pore pressure sensors, located on the cone (denoted u1), directly behind the cone (u2), or at the top of the friction sleeve (u3). Most piezocones for everyday applications use one sensor located at u2 (see image below). The pore pressure sensor consists of a porous filter (usually made of plastic resin), a small cavity of incompressible, low-viscosity fluid, and a pressure transducer. The filter and tubing between the filter and transducer must be fully saturated with fluid, usually glycerin or silicon oil, to ensure fast and accurate readings. The filter must be replaced frequently so that it does not become clogged with soil. The procedure for the CPTu test is slightly different than the [...]

Using CPT Pore Pressure Dissipation Tests to Characterize Groundwater Conditions

In a previous blog, we talked about how pore pressure data is used to correct and adjust soil behavior type characterizations – but this is only one application of this important and revealing information. Pore pressure data can also be used to estimate the depth of the water table and the direction and rate of groundwater flow. This information is useful both for site characterization and for geo-environmental and remediation applications. What is a Pore Pressure Dissipation Test? As a CPT cone is pushed into saturated subsurface soil, it creates a localized increase in pore pressure (denoted excess pore pressure, ui) as groundwater is pushed out of the way of the cone. In a pore pressure dissipation test, the downward movement of the cone is paused and the time it takes for the pore pressure to stabilize is measured. This stable pore pressure is called equilibrium pore pressure, uo. This information allows the user to identify important hydrogeologic features: The water table (or phreatic surface) depth is defined as the distance below the soil surface at which pore pressure is equal to atmospheric pressure. This can be roughly visualized as the level below which subsurface materials are fully saturated with groundwater. Especially in fine-grained soils, estimating the water table can be more complex than simply detecting moisture, since surface tension draws groundwater upwards, creating negative pore pressures. This is effect is called capillary rise. Very low or negative pressures can be difficult to measure precisely with the piezocone, which is primarily designed to measure high pressures below the water table. In this case, the water table depth can be calculated by the following formula: dwater = dcone – hw dwater = water table depth dcone = depth of piezocone hw = water head The water head, hw, is the height [...]

CPT Dictionary: Soil Liquefaction

In our last blog, we discussed using the CPT to estimate the shear strength of soil, which helps gauge how soil will behave during changes in stress. One important application of this capability is the estimation of soil liquefaction potential, meaning the potential of soil to dramatically lose strength when subjected to changes in stress. Liquefaction is of particular concern in sandy, saturated soils. Shaking due to an earthquake or other sudden force causes the grains of loosely packed, sandy soils to settle into a denser configuration. If the soil is saturated and the loading is rapid, pore water does not have time to move out of the way of settling soil: pore water pressure rises, effectively pushing the soil grains apart and allowing them to move more freely relative to each other. At this point, the soil can shift and flow like a liquid—hence the name liquefaction. This dramatic reduction of soil stiffness and strength causes soil to shift under pre-existing forces—say, the pressure of a building’s foundation or the pull of gravity on a slope. The increased pore pressure also increases the force of the soil on in-ground structures such as retaining walls, dams, and bridge abutments. How can the potential for these effects be evaluated using the CPT? The subject is complex, as the wealth of research on the subject over several decades shows! Many approaches for determining cyclic liquefaction potential rely on the cyclic stress ratio (CSR), which requires a seismic analysis of the site. It expresses the ratio of the average cyclic shear stress in an earthquake of a given magnitude and the effective vertical overburden stress at the test site. CSR = 0.65(MWF)(amax/g)(σvo/σ′vo)rd Where: MWF = Magnitude Weighting Factor = (Magnitude)2.56/173 amax = maximum ground surface acceleration g = acceleration of gravity, 9.81m/s2 σvo [...]

Seismic Averaging in SCPTu testing

Did you know that our CPTSND Data Acquisition program can average repeat seismic strikes? Once you have a strike on the screen, simply accept (retain) the strike and then add another strike of the same type ( A strike for example). This second strike will display below the first strike and when the second strike is accepted (retained) it will be averaged with the first strike and only the averaged strike will remain on the screen. If a third strike is added and then accepted (retained) it will be averaged with the result of the first two. (NOTE: Our software does not retain all the individual strikes- once they are averaged only the average is on file) Averaging strikes is recommended by some of the top GeoTechs in the nation!

Go to Top