Oil wells in L.A. and Residential Health Problems

Source: Oil wells in L.A.: Nearby residents grapple with health problems Magali Sanchez-Hall, a Wilmington resident for over two decades, has struggled with asthma her entire life. She says the health issue stems from her proximity to oil and gas drilling. Emma Newburger | CNBC LOS ANGELES, CALIF. — Stepping out of a coffee shop near Interstate 110 in the Wilmington neighborhood of Los Angeles, you’re immediately hit by a foul odor. Magali Sanchez-Hall, 51, who’s lived here for more than two decades, is used to the smell of rotting eggs wafting from the hundreds of oil wells operating in the neighborhood. She’s used to her neighbors describing chronic coughs, skin rashes and cancer diagnoses, and to the asthma that affects her own family, who live only 1,500 feet from a refinery. “When people are getting sick with cancer or having asthma, they might think it’s normal or blame genetics,” she said. “We don’t often look at the environment we’re in and think — the chemicals we’re breathing are the cause.” Wilmington, a predominantly working-class and Latino immigrant community of more than 50,000 people, has some of the highest rates of asthma and cancer in the state, according to a report by the non-profit Communities for a Better Environment. It’s surrounded by six oil refineries and wedged in by several freeways and the ports of L.A. and Long Beach. California, the seventh-largest oil-producing state in the U.S., has no rule or standard for the distance that active oil wells need to be from communities. For many Californians, especially Black and brown residents, acrid smells, noise and dirt from oil production is part of the neighborhood. Walking around Wilmington, pumpjacks are visible in public parks, next to schoolyards where children play and outside of people’s windows at home. At night, the sky is lit [...]

Peer-Reviewed Paper Explains Unprecedented Performance of BioLargo’s AOS Water Treatment Technology

Source: Peer-Reviewed Paper Explains Unprecedented Performance of BioLargo's AOS Water Treatment Technology - Digital Journal WESTMINSTER, CA / ACCESSWIRE / October 4, 2021 / BioLargo, Inc. (OTCQB:BLGO), a developer of sustainable cleantech technologies and full-service environmental engineering company, announced the publication of an important peer-reviewed article confirming that its innovative water treatment technology, the Advanced Oxidation System (AOS), generates highly energetic iodine molecules. The article establishes the foundational scientific principles about why the AOS is a powerful, efficient, and novel water treatment technology. The BioLargo AOS, which is currently deployed in a demonstration pilot project at a municipal wastewater treatment plant, is a ground-breaking water treatment platform that provides rapid and effective disinfection and concurrent organics removal while consuming less electricity than other common treatment technologies. The AOS has previously been shown in bench-scale and pilot-scale studies to exhibit greater water disinfection and decontamination performance than would be expected in similar water treatment technologies. This spurred BioLargo scientists and academic collaborators to elucidate the exact electrochemical mechanisms of the AOS in this study. The paper, published in the American Chemical Society’s journal ES&T Water, examines the mechanism by which the BioLargo AOS produces such rapid and effective disinfection performance relative to past electrochemical water treatment technologies. The study used the Canadian Light Source particle accelerator to perform advanced measurements of the chemical reactions that occur inside the AOS during operation. This technique revealed that the AOS generates highly oxidized iodine molecules that the researchers concluded are likely responsible for the technology’s elevated disinfection efficacy. These special iodine molecules were only present inside the active layers of the AOS and were neutralized before water flowed out of the AOS. Dr. Richard Smith, President of BioLargo Water commented, “Our AOS technology is a technical leap forward in advanced water treatment. This study is [...]

Kentucky seeks action against West Virginia’s Governor’s coal companies

Source: Kentucky seeks action against WVa gov's coal companies - LEXINGTON, Ky. (AP) — Regulators want the family of West Virginia Gov. Jim Justice to pay a penalty and follow through on a promise to fix environmental problems at eastern Kentucky coal mines. The Kentucky Energy and Environment Cabinet asked a circuit judge this week to enforce an agreement over reclamation violations against Justice; his son, Jay Justice; and several family coal companies. It included a $3 million penalty, plus interest, the Lexington Herald-Leader reported. In a motion filed in Franklin County, the Kentucky agency wants to revoke five permits at Justice-company mines and seize money that had previously been posted for reclamation. The motion seeks to force the companies to fix the site violations and block any new or amended permits until then. The Justices and their companies “have been provided many second chances to meet their permit obligations and time and again have failed,” the motion said. Lexington attorney Richard Getty, who represents the family, said the state’s request was “unnecessarily severe.” Justice has said many of the violations were inherited when he acquired the properties. The companies admitted to hundreds of reclamation violations in eastern Kentucky in 2014 and agreed to monitor water quality, fix drainage problems, stabilize landslides, clean out sediment ponds and eliminate highwalls at dozens of mines. After the companies missed a deadline to fix the issues, the state sued in 2015 to enforce the earlier agreement. A new settlement was reached in 2019 setting deadlines to complete reclamation work at five mines, along with other requirements. Last year, Justice's companies agreed to pay more than $5 million for thousands of mine safety violations in a civil case brought by prosecutors in Virginia on behalf of the U.S. Department of Labor and the Mine Safety and [...]

Sustainable solution to mining’s ‘red mud’ waste enters final stage of testing

Source: Sustainable solution to mining’s ‘red mud’ waste enters final stage of testing | Central Queensland Today University of Queensland has developed technology that could rehabilitate mine waste back to useful soil is entering full-scale trials. University of Queensland has developed technology that could rehabilitate mine waste back to useful soil, with the technology now entering full-scale trials. Developed by researchers at UQ’s Sustainable Minerals Institute in partnership with Rio Tinto and Queensland Alumina Limited (QAL) the bio-engineering technology works by transforming bauxite residue, a by-product of alumina refining also commonly called ‘red mud’, into a soil-like material capable of hosting plant life. QAL Environment and Tailings Manager Trent Scherer said there was an excitement amongst the team to see the project move to a full-scale trial. “After years of watching various trials unfold within our daily work environment, to now be able to see the tangible outcomes of UQ’s work unfolding has been encouraging for the team,” he said. Mr Scherer said QAL were committed to minimizing their environmental footprint through their 5-YES program and the funding and resources provided to this project were further steps in that journey. In 2018 QAL commenced works for their 5-Year Environmental Strategy, comprising of 60 capital works projects and culture change initiatives. With a budget of $440 million designed to improve the environmental performance of QAL. This initiative with UQ is in addition to the 5-YES funding and QAL are hoping will pave the way for the future of tailings management. Ecological Engineering of Mine Wastes Group Leader Professor Longbin Huang said the technology would be trialed on an operational scale at two red mud sites in Queensland after the team secured new multi-million dollar funding agreements with Rio Tinto and QAL. “The technology demonstrates how transformative industry-academia partnerships can [...]

Gaming to improve geotechnical engineering education—and broaden diversity

Source: Gaming to improve geotechnical engineering education—and broaden diversity | Rowan Today | Rowan University A new research project at Rowan University’s Center for Research and Education in Advanced Transportation Engineering Systems (CREATES) aims to teach students real-world geotechnical engineering concepts and attract diverse candidates to the field using interactive video games. Called MERGE (Multiphysics Enriched Mixed Reality for Integrated Geotechnical Education), the project is led by Dr. Cheng Zhu, an assistant professor in the Department of Civil and Environmental Engineering; Dr. Ying (Gina) Tang, an expert in serious games and professor in the Department of Electrical and Computer Engineering; Dr. Sarah Ferguson, an assistant professor in the College of Education; Dr. Sarah Bauer, an assistant professor in the Department of Civil and Environmental Engineering; as well as collaborator Dr. Lei Wang, assistant professor of geotechnical engineering at the University of the District of Columbia, a historically Black college and university. Both universities are located on the East Coast of the United States near Delaware, New Jersey, Pennsylvania, Virginia, Maryland, and West Virginia. The study is supported by a $299,210 grant from the National Science Foundation. While college civil engineering programs nationwide focus on concepts like soil mechanics and geotechnical engineering, some course content and textbooks don’t reflect emerging technology and research methods. MERGE games will include real-world scenarios students are likely to encounter in internships and careers in the geotechnical engineering field. Because the games are computer-based, students don’t need access to a lab or expensive equipment, making the learning scenarios accessible anytime and anywhere. It is expected that such authentic, fun and engaging play in games will promote learning. “Most universities don’t really use games to teach students, especially in our field,” Zhu said. “When we design these games, we want to make it very different from the current efforts.” The [...]

Soil Nail Walls Design and Construction

Source: Soil Nail Walls - Design and Construction -NEW (7003IW2022) INSTRUCTOR:  Naresh Samtani, Ph.D., P.E., D.GE, F.ASCE Participants will have access to the virtual workshop video archives and materials for 60 days from the start day of the workshop. Virtual Workshop Brief Using a collaborative and interactive learning approach, this virtual workshop will help you understand the design and construction aspects for soil nail walls. You will learn newer design approaches based on the LRFD platform that is the basis for guidelines for soil nail walls by the American Association of State Highway and Transportation Officials (AASHTO) and the Federal Highway Administration (FHWA). The workshop will help you assimilate the design and construction aspects through active participation by frequent interactions throughout the workshop and real-time expert feedback. The interactions will facilitate a better understanding of the nuances of the newer design principles which would help you avoid costly design errors in real-world projects. In between the two live sessions, attendees will independently work on an application (e.g., exercises) or a reflection (e.g., reading) assignment. Learning Outcomes Upon completion of this course, you will be able to: Explain the terminology for soil nail walls Explain design of soil nail walls using principles of limit state design Explain the essential elements of construction Recognize construction procedures and influence on wall design and performance Explain the importance and concepts of nail testing Identify necessary characteristics of software tools Explain corrosion considerations Discuss facing (shotcrete) analysis Identify the necessary information on plans and specifications Benefits for Participants Become familiar with the latest limit state design approaches and standards for soil nail walls Avoid common pitfalls and costly errors in analysis and design Be able to categorize and streamline limit state evaluation Recognize the importance of considering construction as part of overall design process Assessment of [...]

Reusable Ionic Liquid from Coal Fly Ash Enables Extraction of Rare Elements

Source: Reusable Ionic Liquid Enables Extraction of Precious Rare-earth Elements from Coal Fly Ash | School of Civil and Environmental Engineering Turnipseed Family Chair and Professor Ching-Hua Huang, left, and Ph.D. candidate Laura Stoy, right, published research outlining a new method for extracting rare-earth elements from coal fly ash.  By Melissa Fralick  Researchers from Georgia Tech’s School of Civil and Environmental Engineering have discovered a way to extract rare-earth elements—essential ingredients for nearly all modern electronics—from the ash left behind at coal-burning power plants using a non-toxic ionic liquid. In a paper published in ACS’s Environmental Science and Technology on June 23, the Georgia Tech researchers showed that by applying an ionic liquid directly to solid coal fly ash, rare-earth elements can be successfully removed in a safe process that creates little waste. The study is co-led by Ching-Hua Huang, a professor of environmental engineering and Ph.D. candidate Laura Stoy. A third co-author, Victoria Diaz, is an undergraduate student who joined the lab as part of Georgia Tech’s Summer Undergraduate Research in Engineering/Sciences (S.U.R.E.) program. Rare-earth elements (REEs) are a set of 17 elements that are utilized to make everything from permanent magnets in windmills to LED screens for computers and smart phones. While rare-earth elements aren’t as scarce as their name implies, only a few locations around the globe have deposits large enough to mine directly. Many of these reserves are in politically sensitive locations, resulting in global supply chain tensions. “Right now, China produces over 80 percent of the world’s supply of rare-earth elements, meaning that if something were to happen to disrupt the global supply chain— like a ship getting stuck in the Suez Canal, or a pandemic, or a trade war with China—United States manufacturing might be cut off,” Stoy said. “Our work is one of many efforts to secure a [...]

UD researchers study climate change impacts on soils at military installations

Source: The Ground Underfoot - Civil and Environmental Engineering UD researchers study climate change impacts on soils at military installations We walk over it, drive over it and build on it. Yet, it is probably safe to say, most of us rarely think about the ground beneath our feet. Underneath the grass, concrete, asphalt and other materials in our built environment, however, soil provides structure and stability for what lies above. The United States military wants to understand the role that climate impacts, such as flooding, storm surge or sea level rise, will have on soils at its coastal military bases and facilities, which are critical to national security. Soil conditions can affect the integrity of the ground underpinning buildings, roads, bridges and more. For example, if a soil’s pH were to rise significantly, due to increased salt content-containing ions such as sodium from storm surge, it could create saline conditions that could hamper the ground’s ability to support this necessary infrastructure. Understanding these threats will enable faster and more accurate routing and maneuverability for U.S. forces. The Delaware Environmental Institute (DENIN) is collaborating with the Engineer Research and Development Center (ERDC) of the U.S. Army Corps of Engineers and Louisiana State University to understand how vulnerable military installations along coasts may be affected by soil changes due to sea level rise and coastal flooding. DENIN has received $3.79 million in first- and second-year funding from the U.S. Department of Defense to start this work, and is eligible for an additional $3.82 million in continued funding over the following two years. Led by DENIN Director Don Sparks, Unidel S. Hallock du Pont Chair of Soil and Environmental Chemistry in UD’s Department of Plant and Soil Sciences, the UD effort includes interdisciplinary collaboration with Yan Jin, Edward F. and Elizabeth Goodman Rosenberg Professor [...]

Parameters Variation Model Customization and Sensitivity Analyses

Source: Parameters Variation: Model Customization and Sensitivity Analyses Parameters Variation Model Customization and Sensitivity Analyses A well-known engineering challenge in the framework of finite element (FE) analysis-based design is the large number of input factors involved in geotechnical computational models. There is always a significant amount of uncertainties associated with the properties of geomaterials, being naturally highly heterogeneous materials. In the context of model calibration and validation, conducting a sensitivity analysis is very important. This can determine the key factors which govern the system and efficiently characterize the geotechnical variability for any considered design problem.   Powerful mechanisms for the consideration of parameter variation are also very interesting for speeding up FE model creation and automating results in post-processing. These are also quite useful in reducing model definition for specific types of engineering problems (excavation wall of a specific type under simple ground conditions, simple tunnel shape in uniform rock mass, etc.) to a limited number of parameters that can be inputted in a text file or Microsoft Excel spreadsheet without expert knowledge of the PLAXIS user interface and different modeling techniques and FE know-how. The sensitivity analysis and parameter variation tool in PLAXIS A sensitivity analysis determines how different values of an independent variable affect a particular dependent variable under a given set of assumptions. In other words, sensitivity analyses study how various sources of uncertainty in a mathematical model contribute to the model's overall uncertainty. The Sensitivity Analysis and Parameter Variation tool (see Figure 1) can be used to evaluate the influence of model parameters on calculation results for any particular PLAXIS FE model: The Select Parameters tab sheet will first provide information about all the parameters that can be changed to perform the sensitivity analysis. Available parameters include most model parameters of the data sets for soil and [...]

A Climate Change-Induced Disaster in Denali National Park

Source: A Climate Change-Induced Disaster in Denali National Park | Time The Times has recently showcased an article on the current rockslide situation in Denali National Park. The effects of climate change have been dramatic with the current melting of the permafrost. The National Parks Service has recently upped through gravel removal of the Pretty Rocks Landslide in an effort to keep up as the rapidly thawing permafrost picks up pace. Alaska is right now recognized as the country’s fastest-warming state. The landslide hit unprecedented speed 4 weeks ago causing the team to close the back half of the park weeks earlier than anticipated. This only signals bad news as reservations are canceled in the short term and the long term implications are yet unknown. “This is the canary in the coal mine for infrastructure disruption in Alaska,” says the Camp Denali lodge owner Simon Hamm. “If things continue on the path they’re on, it’s not going to just be Pretty Rock—it’s going to be half of the Alaskan highway system.” Rapid deterioration Denali National Park is one of the U.S.’s largest national parks at 6 million acres, and sits about four hours north of Anchorage. While the entrance to the park is certainly beautiful, many people prefer to hop on buses to access the park’s marquee attractions deep down its single 92-mile road: views of Mt. Denali (formerly Mt. McKinley), the highest peak in North America at 20,000 feet; the gleaming Wonder Lake; rolling mountainsides that contain an abundance of wildlife, including grizzly bears, moose, caribou and bighorn sheep. About halfway along the road lies the Pretty Rocks Landslide, a slowly sliding section of earth that acts more like a glacier than a rockfall. Since the 1960s, permafrost deep below the earth’s surface has thawed, causing the soil and [...]

Go to Top