10 Essentials of Construction Testing and Engineering

Testing construction material is an important step in the building process, as the outcome of testing, as well as the processes used, will ultimately affect the safety and longevity of the final building site. While the reality on most building sites is that the accuracy of testing and cost effectiveness are often balanced, these days it's pretty easy to ensure a high degree of accuracy while still keeping costs at a minimum. Regardless, the overall goal is to establish the foundation for assisting design engineers in making good, informed decisions while meeting building code requirements. By testing construction materials, along with ensuring proper geotechnical analysis, it's possible to guarantee buildings will meet regulatory requirements and last over time. Overall, construction materials, engineering and testing (CoMET) are used to ensure quality control and construction quality assurance. However, construction testing and engineering can only go so far without some key essentials. 10 Essentials of Construction Testing and Engineering: Observation, testing and evaluation of building materials Observation, testing and evaluation of quality construction methods and processes Observation, testing and evaluation of building outcomes Meeting building code compliance Site grading and subsurface prep Soil testing and analysis; evaluation of subsurface materials Cost-effective geotechnical sliutions and materials used Safe application of contaminated subsurface materials Proper recycling of excavated materials and debris Assurance of ground stability, especially in areas common to environmental disaster such as earthquakes, flooding, etc. By making sure to follow each of these 10 essential steps, you're ensuring that every aspect of inspection is covered, in turn ensuring a stable, up-to-code building for the long run. That said, there are a couple more important points to note: CoMET services must be performed during the early stages of a project and processes must be hands-on to ensure each step is given complete attention. Getting [...]

Should you Use a Sand Cone Test in Construction?

It may seem at times that there are almost too many soil testing methods, but many are developed to fit certain scenarios or address issues with other testing methods. This is the case with the sand cone test, which is used to determine soil compaction and is an alternative to using a nuclear density gauge. But does this mean the sand cone test is worth using when working on construction sites? The Pros and Cons of the Sand Cone Test There are many benefits to performing a sand cone test, especially for those relying on a nuclear density gauge. With a sand cone test, you can get similar results at a much lower cost, without the need for radioactive material. The cost of the sand cone test apparatus is also fairly low, making sand cone testing relatively inexpensive. The apparatus consists of a plastic container, a metal cone with a valve and a high density base plate. Its also relatively small and portable, making testing possible pretty much anywhere. The sand cone test has its fair share of negatives as well, including: Easy to compromise samples during testing. Soil samples are sensitive to vibrations, shifting of particles, and any errors in set up of the test site Samples that contain mixed particles can be less accurate Samples that contain too much moisture content can be less accurate Long result time: 20 minutes (vs. nuclear gauge which only takes 1 minute for results) Technicians, of course, should be aware of the limitations of the sand cone test as many factors can skew its results. In other words, the sand cone test may not be worth using when working on construction sites, except to confirm observations and inform opinions about soil moisture and density. This is especially true when you consider that [...]

CPT Mini Track Rig – Our Most Compact Self-Powered Rig

New – The Mini-Track Rig provides all-terrain performance at an affordable capital cost! The latest addition to Vertek's robust line of self-propelled CPT rigs harnesses the popular 20-ton S4 Push System in a small but versatile package. This rubber-tracked rig is easy to maneuver, ideal for limited access areas, and maintains a low ground pressure of 4.5 psi. The S4 Mini-Track Rig provides a powerful carrier at an affordable price when compared to the cost of new construction equipment. Is the Mini-Track Rig right for your application? The Mini-Track Rig is ideal for situations where agility and low ground pressure are important At only 10.5 feet long, it can be transported to job sites with a pick-up and trailer The S4 CPT system's tilt mount increases stability on uneven terrain and provides a low profile during transport The S4 can be removed and attached to construction equipment or custom trailers, allowing for any number of configurations The Mini-Track Rig is available with many options to meet all your testing needs. Though small and light, the Mini-Track Rig provides convenience and functionality similar to Vertek's larger purpose-built CPT rigs. Optional features include: Mechanical or Hydraulic Clamp Diesel or Gas Engine 300,350,400, or 500 mm Anchor Decontamination System Remote Operation 120V AC Inverter Rod Rack For a full list of features, specifications and technical data, visit vertekcpt.com or download our full catalog of Geotechnical and Environmental products.

Beyond the Basics: Contamination Detection and Other Applications of CPT Equipment

Cone Penetration Testing equipment was originally designed – and is still most commonly used – to characterize subsurface soil behavior types. But when you invest in CPT equipment, you are getting the capability to do much more. A variety of sensors and in-situ samplers can be integrated into CPT modules, making CPT equipment a versatile and efficient choice for contamination detection, environmental site assessment, and other field applications. CPT equipment has several advantages over conventional hollow stem auger drilling and percussion drilling based methods, especially in contaminated soils. Specialized CPT tests can identify contaminants and determine the physical extent of the contamination with minimal disturbance of the soil, thus avoiding costly disposal of drill cuttings and minimizing contact between field personnel and potentially hazardous materials. Here’s an overview of some tests and technologies that you can harness via CPT equipment: Temperature: Temperature data is obviously useful in locating zones of different ground temperature, for example frozen soil. However, it can also help to identify soil contaminants that generate heat due to chemical or biological activity. Electrical Resistivity: The electrical properties of soil are changed when the soil is contaminated. For example, soils containing non-aqueous-phase (NAPL) compounds exhibit higher resistivity than normal, while soils containing dissolved organic compounds such as can be found in landfill leachates have significantly lower resistivity. Fluorescence Detection: Most hydrocarbons produce fluorescence when irradiated with certain kinds of light. Thus, hydrocarbon contamination can be efficiently detected by integrating LEDs of a particular wavelength (or sometimes lasers) into CPT cone modules. The detected wavelength of the fluorescent response to the excitation source is graphed in real time and is used to determine the areas of interest and further define contaminants. The integrated camera or video camera module can also be used to visually inspect in-situ characteristics such as [...]

Understanding the Relationship between SPT Data and CPT Data

As you know, Cone Penetration Testing is not the only method for determining the mechanical properties of soil. Another method is the Standard Penetration Test, or SPT: in this test, a borehole is drilled to a desired depth, then a hollow sampler is inserted and driven downwards with a hammer. The hammer blows are counted until the sampler travels the desired depth (usually 18”) – this number, denoted NSPT, indicates the mechanical properties of the soil. As with CPT data, a handful of corrections are commonly applied: for example, the N60 value indicates NSPT data corrected for the mechanical efficiency of a manual hammer, estimated at 60% at shallow overburden conditions. Since SPT is one of the most common in-situ soil testing methods, you may find it necessary to compare information from both SPT and CPT tests, or convert from one set of parameters to the other, for example from SPT N60 values to CPT tip resistance values. Several methods have been proposed for calculating this relationship. Below are two of the most frequently used: Robertson and Campanella: This method for correlating SPT and CPT data uses the following relationship between SPT N60 data and CPT tip resistance: (qc/pa)/N60 qc = tip resistance (psi) pa = atmospheric pressure (psi) Soil behavior type can be determined from this equation based on the following table: This is perhaps the simplest method for relating the results of these two tests, but it can cause some confusion when the results fall on the border of two soil behavior type zones, or in situations where the ratio of CPT to SPT data could indicate one of several different soil types. Jefferies and Davies: This is a more robust method for determining SPT N-values based on CPT data, or vice versa. It avoids the discontinuities of [...]

Smart DCP – Get the app for instant data logging and laser accuracy!

DCP (Dynamic Cone Penetrometer) testing is a highly portable, lightweight soil testing method. It is ideal for shallow tests and can be carried by hand from one location to the next, making it a good choice for applications such as road bed construction and maintenance. However, traditional DCP testing has drawbacks: though the equipment is lightweight, the test requires two people—one to operate the hammer and the other to measure the displacement with each blow. This manual process makes the test quite labor-intensive, and human errors in measurement and recording can make it difficult to obtain consistent results The Vertek Smart DCP system takes this portable, low-cost testing method into the 21st century with laser measurement and real-time data acquisition. Rather than relying on by-hand measurement to track the displacement of the cone, our laser measurement system makes this process both instantaneous and accurate, eliminating the need for a two-person test. Displacement data is transmitted wirelessly and collected via our convenient smartphone app. Where a traditional DCP system would require two people, Smart DCP requires only one person and a phone--yet it allows the test to be completed much faster. Time and labor savings don't stop when the in-situ test is completed: rather than having to manually enter and plot your data on your laptop or computer, our smartphone app lets you log data in real time and gives you access to powerful presentation and analysis capabilities in the field. The raw and processed data can be transmitted by text or email in multiple formats. Like any other app, it can simply be downloaded from the app store on your phone and is available for iOS and Android operating systems. See the Smart DCP system in action in the video below, and check out our website for more information about [...]

Geotechnical Engineering | Georgia Tech School of Civil and Environmental Engineering

Geotechnical Engineering Georgia VIDEO: Watch Bonaparte’s Terzaghi Lecture Professor of the Practice Rudy Bonaparte received the American Society of Civil Engineering Geo-Institute’s highest honor in 2018 when he was selected to deliver the Karl Terzaghi Lecture. The Geo-Institute now has posted video of Bonaparte’s presentation. Geosystems Engineering Georgia Friday, January 18, 2019     Source: Geotechnical Engineering | Georgia Tech School of Civil and Environmental Engineering

Go to Top