Researcher Aids Arkansas Highway Projects Through Subsurface Analysis

Source: Researcher Aids Arkansas Highway Projects Through Subsurface Analysis | University of Arkansas FAYETTEVILLE, Ark. – A University of Arkansas geotechnical engineer is collaborating with the Arkansas Department of Transportation to map subsurface conditions before road construction begins to identify issues early and help keep highway construction projects on track and on budget. Clint Wood, a civil engineering associate professor and geotechnical engineer, creates profiles of subsurface conditions and soil composition by sending stress waves into the ground and measuring their response at the surface. The non-invasive technology is similar to how ultrasound imaging works on the human body. The technology provides important information for highway designers and construction contractors, who’ve had to rely on imperfect methods for determining subsurface conditions, such as exploratory drilling, a strategy that can miss changes between limited drilling locations. Wood compares designing based on limited exploratory drilling to navigating with an incomplete map. The research is conducted for and in conjunction with the Arkansas Department of Transportation. With an additional $115,318 grant, the transportation department has provided a total of $561,427 in funding. The work focuses on estimating the depth and stiffness of bedrock for new highway alignments and understanding subsurface conditions that cause slope instability. The latter is especially important for understanding how water moves through a slope. Unexpected changes in bedrock depth near slopes can also create pockets where water collects, which can cause the soil in the slope to become saturated, leading to instability. Projects that encounter these issues can face substantial extra costs and delays while designers and contractors adapt the original plan or have to attempt another repair. Those problems can be avoided, or at least minimized, by better understanding the subsurface conditions through non-invasive testing. LIDAR AND DRONE ACCURACY In a separate project, Wood and several other U of A [...]

Concrete Dam Safety Inspection with Ground Penetrating Radar GPR

Source: Concrete Dam Safety Inspection with Ground Penetrating Radar GPR | For Construction Pros A non-destructive with ground-penetrating radar inspection could save time and money during investigations of this critical element in concrete infrastructure. GSSI using the Structure Scan™ Mini XT to refine the dam survey area. Geophysical Survey Systems As the world struggles to improve its critical infrastructure, many are seeking out non-destructive testing (NDT) methods that can help to accurately determine what can be repaired and what needs to be replaced. In the field of dam safety, NDT methods are seen as a way to cut down on the actual work that has to be done, while making sure that condition data is most accurate. Engineers, facility managers, and dam operators need accurate information on the structural health of their facility to take decisive action to prevent catastrophic incidents. Earthquake monitoring systems can assist decision-making by providing predictive data before an earthquake and evaluating the structural integrity of the dam or levee before and immediately after an earthquake (Dam Safety Group,  Ground-Penetrating Radar for Dam Investigative Applications, 2021) Among the available NDT methods, ground-penetrating radar (GPR) is growing in importance for dam evaluation applications. Increasingly, both public- and privately-funded dam owners are looking to GPR technology to inspect the dam infrastructure and surrounding areas. GPR can be cost-effectively integrated with other types of ground surveys to build a visual understanding of the overall subsurface of the site. The technology can be rapidly deployed, provides an effective means to evaluate subsurface information, and contributes to continuous monitoring and condition assessment throughout a structure’s life. In response to the need for the best possible NDT methods, several industry experts founded the Dam Safety Group, which provides a wide range of geophysical and seismic techniques and technologies to address non-invasive [...]

Microbial material modification helps to control frost heave and saline soil solidification

Source: Microbial material modification helps to control frost heave and saline soil solidification Chinese researchers recently conducted a study on process of biogas generation improving physical and mechanical properties of soil. A research team led by Sheng Yu from the Northwest Institute of Eco-Environmental Resources (NIEER) of the Chinese Academy of Sciences (CAS), together with their colleagues from Southeast University, has implanted Pseudomonas Stutzeri in the soil pores and induced it to produce nitrogen bubbles, and they also analyzed the influence mechanism of mitigation of sand liquefaction using biogas bubbles. In the natural environment, there are many microorganisms in rock and soil masses, and its metabolic activities will change physical and mechanical properties of rock and soil. These microbial activities can be controlled, enhanced and used to solve geotechnical problems, and such methods have been named as biogeotechnologies. As an emerging interdisciplinary field, it has developed rapidly in recent years due to its advantages of low carbon and friendly environment. From the perspective of practical application, biogeotechnologies can be used for rock and soil reinforcement, sealing of water leakage, prevention of sand liquefaction, soil erosion resistance control, and contaminated soil treatment and so on. Based on the above research results, the NIEER research group is exploring to apply biogeotechnologies to frost heave control and saline soil solidification, and has achieved some preliminary results. In this study, the researchers applied biogas generation process to soil frost heaving treatment, and studied improvement of biogas production performance under low temperature conditions. Results showed that sealing effect of bubbles and microorganisms on the water migration path can reduce soil permeability coefficient by one order of magnitude. Besides, they also introduced biomineralization to solve the prominent problem of saline soil with high chloride content in Northwestern China. Based on excellent curing effect, they analyzed the deterioration mechanism of [...]

Mitigating carbon may have unintended consequences

Source: Mitigating carbon may have unintended consequences | Penn State University UNIVERSITY PARK, Pa. — Controlling carbon release into the atmosphere will reduce carbon dioxide and slow global warming, but could there be unintended consequences for human health? Now, thanks to a three-year grant of about $400,000 from the National Science Foundation, researchers at Penn State will investigate potential positives and negatives of decarbonization. "There can be unintended health co-harms from some carbon mitigation strategies," said Wei Peng, assistant professor of international affairs and civil and environmental engineering and principal investigator on the project. "For instance, large-scale bioenergy production may drive up food prices, which leads to nutrition-related health co-harms." Of course, mitigating carbon can also bring health benefits, including a reduction of pollution in the atmosphere. "Tangible human health co-benefits can motivate stronger support for climate policy," said Peng. The researchers aim to improve understanding of what factors determine the size and scope of health outcomes from decarbonization and to identify strategies most likely to yield overall health benefits. Focusing on the U.S., Peng and her team will develop a framework integrating energy, food and health. They will improve health variables in a state-level integrated assessment model and connect it to a fine-resolution, health impact assessment model. They will also develop a large number of scenarios of decarbonization to encompass future uncertainties, technology and markets. This project is the extension of two seed grants from Penn State's Institutes of Energy and the Environment and Institute for Computational and Data Sciences. Vivek Srikrishnan, assistant professor of biological and environmental engineering, Cornell University, is the co-principal investigator (PI) on this project. Peng is also a co-PI on a project looking to model the interactions of climate change, air quality and social inequalities. This five-year, $1.5 million NSF grant, co-led by Mark [...]

New Estimate Makes Groundwater Earth’s Largest Water Reservoir on Land

Source: New Estimate Makes Groundwater – Not Ice Sheets – Earth’s Largest Water Reservoir on Land – Leak Herald Hot springs, which can source deep groundwater, are one of the places on the surface where there is evidence of rainwater circulating to depths of two kilometers and deeper. In the states, the top places for finding groundwater are Mississippi, Kansas, Arkansas, Nebraska, and South Dakota. New research doubles volume of salty water two to 10 kilometers beneath the surface that could store waste fluids, sequester carbon, and direct our search for extraterrestrial life. New research more than doubles the estimated volume of ancient, salty groundwater stored deep within Earth’s crust. Around 24 million cubic kilometers (5.8 cubic miles) of groundwater reside within the top two kilometers (1.2 miles) of Earth’s crust. This shallow groundwater is what we use for drinking and irrigation, and it’s mostly freshwater. But below that are vast reservoirs of brine, some of it hundreds of millions to more than a billion years old, locked away in the rocks. The question was: How much is there? A new study estimates there are around 20 million cubic kilometers of deep groundwater, or enough to fill around 4,800 Grand Canyons. Combined with previous estimates of shallower groundwater, the new research finds underground water is the largest reservoir of water on land, measuring 44 million cubic kilometers and surpassing the volume of Earth’s ice sheets. “This estimate expands our conceptual and practical understanding of the amount of water that Earth holds, and it adds a whole different dimension to the hydrologic cycle,” said Grant Ferguson, a hydrogeologist at the University of Saskatchewan who was lead author of the new study in the AGU journal Geophysical Research Letters, which publishes high-impact, short-format reports with immediate implications spanning all Earth and space sciences. [...]

Construction Vibrations

Source: Construction Vibrations -NEW (7004IW2022) INSTRUCTOR:  Antonios Vytiniotis, Ph.D., P.E Participants will have access to the virtual workshop video archives and materials for 60 days from the start day of the workshop. Virtual Workshop Brief The workshop will cover a variety of issues regarding construction vibrations. It will start by describing the sources of construction vibrations, the propagation of vibrations with a soil and scatter effects. Then it will cover the effects of such vibrations in: 1) structures; 2) human perception; and 3) indirect effects of such vibrations. The workshop will cover examples of construction vibration effects in various structures and will show how conditions in structures can be evaluated to understand whether they are caused by vibrations. The workshop will show how construction vibrations can be monitored effectively by state-of-the-art equipment. Finally, this workshop will show how to analyze the data from monitoring to generate valuable insights about their effects on structures. A greater understanding of construction vibrations will help in mitigation of their damaging effects. Benefits and Learning Outcomes Upon completion of this course, you will be able to: Explain sources of construction vibrations Explain effects of construction vibrations Explain causation of damage potentially associated with construction vibrations Monitor construction vibrations Mitigate construction vibrations Avoid costly adjacent construction litigation Assessment of Learning Outcomes Achievement of the learning outcomes by attendees will be assessed through online discussion and case studies. A short post-assessment (true-false, multiple choice and fill in the blank questions) will also be administered. Who Should Attend Geotechnical Engineers Structural Engineers Civil Design Engineers Owners Construction City Planners Workshop Outline Day 1 Construction Vibration Sources Vibration Propagation and Energy Dissipation Discussion about Literature Data Interactive discussion and quiz about sources, propagation and state of the practice Human Perception of Vibrations Direct Effects of Vibrations Interactive discussion about effects [...]

Soil Nail Walls Design and Construction

Source: Soil Nail Walls - Design and Construction -NEW (7003IW2022) INSTRUCTOR:  Naresh Samtani, Ph.D., P.E., D.GE, F.ASCE Participants will have access to the virtual workshop video archives and materials for 60 days from the start day of the workshop. Virtual Workshop Brief Using a collaborative and interactive learning approach, this virtual workshop will help you understand the design and construction aspects for soil nail walls. You will learn newer design approaches based on the LRFD platform that is the basis for guidelines for soil nail walls by the American Association of State Highway and Transportation Officials (AASHTO) and the Federal Highway Administration (FHWA). The workshop will help you assimilate the design and construction aspects through active participation by frequent interactions throughout the workshop and real-time expert feedback. The interactions will facilitate a better understanding of the nuances of the newer design principles which would help you avoid costly design errors in real-world projects. In between the two live sessions, attendees will independently work on an application (e.g., exercises) or a reflection (e.g., reading) assignment. Learning Outcomes Upon completion of this course, you will be able to: Explain the terminology for soil nail walls Explain design of soil nail walls using principles of limit state design Explain the essential elements of construction Recognize construction procedures and influence on wall design and performance Explain the importance and concepts of nail testing Identify necessary characteristics of software tools Explain corrosion considerations Discuss facing (shotcrete) analysis Identify the necessary information on plans and specifications Benefits for Participants Become familiar with the latest limit state design approaches and standards for soil nail walls Avoid common pitfalls and costly errors in analysis and design Be able to categorize and streamline limit state evaluation Recognize the importance of considering construction as part of overall design process Assessment of [...]

Breaking Uncommon Ground in the Kansas Countryside

Source: Breaking Uncommon Ground in the Kansas Countryside - Alpha-Omega Geotech, Inc. Look beyond I-435 to the west of Kansas City’s urban core and you’ll see a surge of new commercial development taking shape. It’s not all typical, flat farmland and turning it into opportunity requires a strategic approach. Before you put together plans for a construction project, consider a few pointers based on our experience. Don’t Be Surprised by a Predictably Unpredictable Subgrade. Be careful not to make assumptions about what’s just below the surface and deeper down, especially along K-10 in the vicinity of Lenexa. Every potential build site is different to some degree and variations from site to site can be substantial. Much of the landscape is hilly, and history has left behind miscellaneous man made factors that will impact everything from site selection to construction. Decades of variables ranging from undocumented subgrade material, buried trees and buried gravel roads to improperly filled farm ponds lurk underground, even in areas that appear to be untouched. In addition, old limestone mines abandoned as far back as the 1980s wind through the area and present ongoing challenges for developers. The proximity of mines isn’t necessarily a deal breaker when it comes to project site selection, but you’ll need to clearly understand the limitations of the subgrade above and around them. You’ll also need to be on the lookout for mine spoils material carved out over the years and buried for disposal. Uncovering subgrade wildcards and narrowing site selection is only possible through an extensive investigation. A precise boring plan with thorough soil testing will be critical in the hunt for a project site that’s feasible in context of your timeline and budget. Make sure your geotechnical engineering partner knows exactly how you expect foundations to perform so that they can pinpoint [...]

WIU Graduates First Civil Engineering and Electrical Engineering Students

Source: WIU Graduates First Civil Engineering and Electrical Engineering Students Associate Professor of Engineering Blair McDonald and Jeremy May, new alumnus of WIU Civil Engineering MACOMB, IL - - The Civil Engineering and Electrical Engineering programs on Western Illinois University's Quad Cities campus have marked their first graduates. Jeremy May, of Geneseo, IL, received his degree in Civil Engineering, and Dakota Wilson, of East Moline, IL; Jeffrey Latham, of Davenport IA; and Travis Ohlsen, of Moline IL received their degrees in Electrical Engineering in May. In Spring 2019, the Illinois Board of Higher Education (IBHE) approved new degrees in Electrical Engineering (EE) and Civil Engineering (CE) within the WIU School of Engineering, which began in Fall 2020. Western's Civil Engineering program prepares graduates to work in the structural, geotechnical, transportation and water resources areas of either government (local or federal) or private practice. While May is the first Civil Engineering graduate from this new program, several students have graduated in recent years with a civil engineering emphasis, and all are now working with companies such as Shive-Hattery, Inc., Bruner, Cooper & Zuck, Inc., the US Army Corps of Engineers and Illinois Department of Transportation. Many WIU Engineering graduates have gone on to obtain their professional licensures, which involves a four-year process following graduation. Electrical Engineering develops students' knowledge of rapidly expanding technologies in electricity, electronics and electromagnetism. One of the requirements of an EE degree is to take an additional math course, Linear Algebra, which allows all EE students to automatically obtain a minor in Mathematics. Latham, Ohlsen and Wilson all make up the EE Senior Design Team for an Autonomous Tracked Vehicle. Latham plans to continue his education with the University of Arizona's Engineering-Robotics and Automation graduate program. Ohlsen recently completed his internship with KONE Escalator Supply Unit and began working full [...]

UD researchers study climate change impacts on soils at military installations

Source: The Ground Underfoot - Civil and Environmental Engineering UD researchers study climate change impacts on soils at military installations We walk over it, drive over it and build on it. Yet, it is probably safe to say, most of us rarely think about the ground beneath our feet. Underneath the grass, concrete, asphalt and other materials in our built environment, however, soil provides structure and stability for what lies above. The United States military wants to understand the role that climate impacts, such as flooding, storm surge or sea level rise, will have on soils at its coastal military bases and facilities, which are critical to national security. Soil conditions can affect the integrity of the ground underpinning buildings, roads, bridges and more. For example, if a soil’s pH were to rise significantly, due to increased salt content-containing ions such as sodium from storm surge, it could create saline conditions that could hamper the ground’s ability to support this necessary infrastructure. Understanding these threats will enable faster and more accurate routing and maneuverability for U.S. forces. The Delaware Environmental Institute (DENIN) is collaborating with the Engineer Research and Development Center (ERDC) of the U.S. Army Corps of Engineers and Louisiana State University to understand how vulnerable military installations along coasts may be affected by soil changes due to sea level rise and coastal flooding. DENIN has received $3.79 million in first- and second-year funding from the U.S. Department of Defense to start this work, and is eligible for an additional $3.82 million in continued funding over the following two years. Led by DENIN Director Don Sparks, Unidel S. Hallock du Pont Chair of Soil and Environmental Chemistry in UD’s Department of Plant and Soil Sciences, the UD effort includes interdisciplinary collaboration with Yan Jin, Edward F. and Elizabeth Goodman Rosenberg Professor [...]

Go to Top