Geologists and Geotechnical engineers provide flood risk management

Source: DVIDS - News - Geologists and Geotechnical engineers dig deep to provide flood risk management At the Arcadia flood risk management project, in Arcadia, Wisconsin, geotechnical staff are gathering data using a unique method of subsurface exploration. The Cone Penetrometer Test, or CPT, is one method used to identify and characterize soils. The CPTs were conducted with assistance from the Savannah District geotechnical and geology branch. “We benefited from their expertise and cooperation,” said Greg Wachman, senior geotechnical engineer. In CPTs, a device with a conical tip and metal sleeve measure penetration resistance as it’s pushed into the ground. Those measurements are used to characterize the soils’ engineering properties. For example, the forces on the device as it’s pushed through a soft clay are very different from those as it’s pushed through a dense sand, Wachman said. The device also records pore water pressure, which aids in understanding soil permeability and groundwater characteristics. CPTs vs. soil borings A CPT is most useful when used together with standard soil borings, Wachman explained. A soil boring drills into the ground to retrieve physical samples. In contrast, with a CPT, the soil is never seen. CPTs are significantly faster than standard borings and provide continuous test data with depth. With a soil boring, samples are collected about every 5 feet, or change in material, so it’s possible to miss important information. One limitation of the CPT, due to excessive friction, is that it may not be extended to the same depth as a soil boring. The CPTs at Arcadia are being pushed to approximately 60-70 feet, whereas a soil boring can be performed in excess of 100 feet. “By doing some CPTs next to soil borings – where we know what the soils are – we can increase the likelihood that we [...]

Studying the ground under your feet: Interview with Taylor Hall about rock and soil stability

Source: Studying the ground under your feet: Science Moab speaks with Taylor Hall about rock and soil stability | Get Out & Go | moabsunnews.com Moab is renowned for its biological soil crusts, but what’s happening underneath all that crusty black — with the soil and rock itself? This week, we speak with geotechnical engineer Taylor Hall, owner of the Moab Geotechnical Group, about soil mechanics, engineering tools, and how he decided — at age 15, in a McDonald’s — to start working with the dirt. Science Moab: What is geotechnical engineering? Hall: Geotechnical engineering generally deals with rock and soil mechanics and physics: how those materials will respond to structures or just how they respond to gravity. We might look at something like a bridge to understand its foundations, or we might look at a landslide that gets triggered by natural causes. We’re fortunate to be able to come in there and tell you how things are responding and why and what to expect. Science Moab: How do you test soil? Hall: When geotechnical engineering got its feet in the 1940s and 1950s, they would sample soil by drilling a hole and driving a sampler into the ground using a fixed-weight hammer. Using that method, we were able to acquire a sample and get some resistance associated with that sample. That's much of what we do today, but we do it now because it's backed by 60 or 70 years’ worth of empirical relationships. Generally, you're only dealing with one or two such holes, and you have to use them to characterize a whole site. It's tough, but that's why I chose geotechnical engineering: because no two sites are the same. It provides the opportunity to really think on your feet. Science Moab: Once you’ve taken measurements, how do [...]

Drone Rules Make Tracking Down Faults a Difficult Feat

Chelsea Scott looks on as Michael Bunds lands a fixed-wing drone in Southern California. Credit: Jui-Chi (Vickie) Lee Source: Drone Rules Make Tracking Down Faults a Difficult Feat - Eos Chelsea Scott and Ramón Arrowsmith, like many earthquake scientists, track down faults. As tectonics researchers at Arizona State University, they need to know where a fault is, how much it’s moved, and how it behaves below the surface. Small uncrewed aerial systems, also known as drones, provide them with high-resolution photographs that capture the necessary information at the scale of centimeters—a higher resolution than some commonly used, easily accessible satellite or airborne data sets. However, collecting drone data along the length of a fault is no simple task. Bigger Is Better A magnitude 7.0 earthquake can produce a 62-mile-long (100-kilometer-long) rupture with surface displacements of up to about 3 feet (1 meter), said Arrowsmith. “You need to have a good enough ruler to measure [that],” he said, which imagery collected from drones can easily provide. The problem, he said, is rapidly covering a 62-mile stretch. Nearly every country that regulates drone operations recommends or requires that pilots maintain visual contact with their drone. One way around the problem is to use a bigger drone. Cheap, heavy quadcopters—helicopters that can easily take off and land—are small compared with lightweight, expensive fixed-wing drones that look like tiny airplanes. In February 2020, Scott and three colleagues spent almost 4 days mapping 25 miles (40 kilometers) of the San Andreas Fault in Southern California. Although they had quadcopters, Scott said “the workhorse was the fixed-wing drone.” “Because fixed-wing drones are so expensive, flight planning is done very, very carefully, and unfortunately the project is over if the drone crashes.” The average quadcopter can be spotted approximately half a mile (0.8 kilometer) away; mapping long linear features like [...]

Informed Streets Pavement Management Solution

Source: Horrocks' Informed Streets Pavement Management Solution Road maintenance is an essential component of city infrastructure. However, deciding what needs to be fixed and when is often a subject of debate. That's where Horrocks' new pavement management system comes it. Using data-driven analysis, it takes some of the guesswork out of the entire process making road maintenance more cost-effective. This will be an exceptionally great tool for cities like Anchorage, Atlanta, Boulder, Chicago, Indianapolis, Little Rock, Los Angeles, San Francisco, New York, and Phoenix. Informed Streets for Pavement Management Horrocks’ new pavement management system has been dubbed Informed Streets. This is simply because it helps create road maintenance schedules, allowing our clients to maximize their budgets by applying the right treatment to the right road at the right time. This system assesses existing pavement conditions and uses predictive models to develop unique, data-driven management plans that optimize costs and upkeep. These plans are created through the following four stages: 1. Initial Assessment and Survey Horrocks’ mobile LiDAR unit during initial survey In the initial phase of service, Horrocks’ in-house survey crews complete a thorough survey and pavement assessment of the roadways. This is done using a truck-mounted Light Detection and Ranging (LiDAR) unit to assess the pavement by collecting one million survey-grade points every second. Our experts then use this data to develop a baseline for a pavement management plan by providing one of two pavement ratings, depending on our client’s needs: the Pavement Surface Evaluation and Rating (PASER) or Pavement Condition Index (PCI). 2. Data Analysis and Planning Once the pavement rating is complete, an online platform is set up for our client, which includes the Informed Streets3D Viewer. Horrocks’ Informed Streets 3D Viewer integrates GIS systems, LiDAR point clouds, and photography in one robust platform that allows for [...]

NASA grants UArizona $500,000 to research mining lunar resources

Source: NASA grants UArizona $500,000 to research mining lunar resources - Tucson, Arizona - Eminetra TUCSON, Ariz. — The idea of space mining is growing popular. Engineers at the University of Arizona are mapping out a plan to harvest the moon's resources. They’ll do so with a new excavation technique using autonomous robot swarms to mine lunar resources. The research team received a $500,000 two-year grant from NASA to advance space mining methods. “This is a really super exciting grant that is letting us really work in this domain of excavation, site preparation, and resource mining,” said Jekan Thanga, an associate professor for aerospace and mechanical engineering. Thanga developed a system called HEART to help with their research. It is an autonomous robotic system that will train robots to work together and improve over time. “It is also a system that cooperates with humans. So the humans work together with the system to identify new scenarios, identify with unknown scenarios, and then work together to sort of figure out a suitable solution,” said Thanga. A solution, for example, such as mining core from the moon. “To break this rock it takes enough power to light a 100 watt light bulb for about an hour. So if we're going to do the same thing on the moon, we’re going to need more efficient processes,” said Moe Momayez, the interim department head of mining and geological engineering. To mine and drill on the moon, Momayez developed a process that can drill through rock five times faster than any other method. “So water being a scarce commodity on the moon, we may have to modify our technique to use very little water or no water at all,” said Momayez. The team still considers humans a critical part of space exploration, but these robot [...]

Construction Vibrations

Source: Construction Vibrations -NEW (7004IW2022) INSTRUCTOR:  Antonios Vytiniotis, Ph.D., P.E Participants will have access to the virtual workshop video archives and materials for 60 days from the start day of the workshop. Virtual Workshop Brief The workshop will cover a variety of issues regarding construction vibrations. It will start by describing the sources of construction vibrations, the propagation of vibrations with a soil and scatter effects. Then it will cover the effects of such vibrations in: 1) structures; 2) human perception; and 3) indirect effects of such vibrations. The workshop will cover examples of construction vibration effects in various structures and will show how conditions in structures can be evaluated to understand whether they are caused by vibrations. The workshop will show how construction vibrations can be monitored effectively by state-of-the-art equipment. Finally, this workshop will show how to analyze the data from monitoring to generate valuable insights about their effects on structures. A greater understanding of construction vibrations will help in mitigation of their damaging effects. Benefits and Learning Outcomes Upon completion of this course, you will be able to: Explain sources of construction vibrations Explain effects of construction vibrations Explain causation of damage potentially associated with construction vibrations Monitor construction vibrations Mitigate construction vibrations Avoid costly adjacent construction litigation Assessment of Learning Outcomes Achievement of the learning outcomes by attendees will be assessed through online discussion and case studies. A short post-assessment (true-false, multiple choice and fill in the blank questions) will also be administered. Who Should Attend Geotechnical Engineers Structural Engineers Civil Design Engineers Owners Construction City Planners Workshop Outline Day 1 Construction Vibration Sources Vibration Propagation and Energy Dissipation Discussion about Literature Data Interactive discussion and quiz about sources, propagation and state of the practice Human Perception of Vibrations Direct Effects of Vibrations Interactive discussion about effects [...]

Soil Nail Walls Design and Construction

Source: Soil Nail Walls - Design and Construction -NEW (7003IW2022) INSTRUCTOR:  Naresh Samtani, Ph.D., P.E., D.GE, F.ASCE Participants will have access to the virtual workshop video archives and materials for 60 days from the start day of the workshop. Virtual Workshop Brief Using a collaborative and interactive learning approach, this virtual workshop will help you understand the design and construction aspects for soil nail walls. You will learn newer design approaches based on the LRFD platform that is the basis for guidelines for soil nail walls by the American Association of State Highway and Transportation Officials (AASHTO) and the Federal Highway Administration (FHWA). The workshop will help you assimilate the design and construction aspects through active participation by frequent interactions throughout the workshop and real-time expert feedback. The interactions will facilitate a better understanding of the nuances of the newer design principles which would help you avoid costly design errors in real-world projects. In between the two live sessions, attendees will independently work on an application (e.g., exercises) or a reflection (e.g., reading) assignment. Learning Outcomes Upon completion of this course, you will be able to: Explain the terminology for soil nail walls Explain design of soil nail walls using principles of limit state design Explain the essential elements of construction Recognize construction procedures and influence on wall design and performance Explain the importance and concepts of nail testing Identify necessary characteristics of software tools Explain corrosion considerations Discuss facing (shotcrete) analysis Identify the necessary information on plans and specifications Benefits for Participants Become familiar with the latest limit state design approaches and standards for soil nail walls Avoid common pitfalls and costly errors in analysis and design Be able to categorize and streamline limit state evaluation Recognize the importance of considering construction as part of overall design process Assessment of [...]

UD researchers study climate change impacts on soils at military installations

Source: The Ground Underfoot - Civil and Environmental Engineering UD researchers study climate change impacts on soils at military installations We walk over it, drive over it and build on it. Yet, it is probably safe to say, most of us rarely think about the ground beneath our feet. Underneath the grass, concrete, asphalt and other materials in our built environment, however, soil provides structure and stability for what lies above. The United States military wants to understand the role that climate impacts, such as flooding, storm surge or sea level rise, will have on soils at its coastal military bases and facilities, which are critical to national security. Soil conditions can affect the integrity of the ground underpinning buildings, roads, bridges and more. For example, if a soil’s pH were to rise significantly, due to increased salt content-containing ions such as sodium from storm surge, it could create saline conditions that could hamper the ground’s ability to support this necessary infrastructure. Understanding these threats will enable faster and more accurate routing and maneuverability for U.S. forces. The Delaware Environmental Institute (DENIN) is collaborating with the Engineer Research and Development Center (ERDC) of the U.S. Army Corps of Engineers and Louisiana State University to understand how vulnerable military installations along coasts may be affected by soil changes due to sea level rise and coastal flooding. DENIN has received $3.79 million in first- and second-year funding from the U.S. Department of Defense to start this work, and is eligible for an additional $3.82 million in continued funding over the following two years. Led by DENIN Director Don Sparks, Unidel S. Hallock du Pont Chair of Soil and Environmental Chemistry in UD’s Department of Plant and Soil Sciences, the UD effort includes interdisciplinary collaboration with Yan Jin, Edward F. and Elizabeth Goodman Rosenberg Professor [...]

ASU Receives Western States Seismic Policy Council Award in Excellence

Source: Sustaining solid ground | ASU News   A team of faculty members and students in the Ira A. Fulton Schools of Engineering at Arizona State University contributed to a major geotechnical engineering field research project recently recognized with a 2021 Western States Seismic Policy Council Award in Excellence. Associate Professor Leon van Paassen led the group from ASU’s Center for Bio-mediated and Bio-inspired Geotechnics, in a collaboration with researchers from Portland State University and the University of Texas at Austin. The endeavor has been funded by the Natural Hazard Engineering Research Infrastructure program of the National Science Foundation. Recent ASU civil engineering doctoral graduate Elizabeth Stallings Young (second from the right) is shown with Portland State University students and staff members involved in characterizing soils near the Portland International Airport, one of two main sites for a major soil liquefaction research project supported by the National Science Foundation. Van Paassen and Professor Edward Kavazanjian, director of the Center for Bio-mediated and Bio-inspired Geotechnics, have collaborated on projects to reduce the impact of earthquakes on soils. One of these aftereffects is liquefication, or the process by which soil saturated with water loses strength, which can lead to ground failure. ​The multi-university project involves microbially induced desaturation — called the MID technique — for mitigation of earthquake-induced liquefaction in silty soils. Photo by Leon van Paassen/ASUDownload Full Image Seeking earthquake and engineering solutions The work has included treating two test sections located within the Port of Portland Critical Energy Infrastructure hub (the Harborton site) and adjacent to Portland International Airport (the Sunderland site). The map shows two sites in the vicinity of Portland International Airport and the Port of Portland Critical Energy Infrastructure hub that are test sections for the research to develop techniques for reducing soil damage as a result of earthquakes. Map courtesy of Portland State University There, researchers monitored the treatment performance and [...]

Sichuan China Earthquake

Source: Sichuan, China: Earthquake leaves three dead and 60 injured - CNN An earthquake in China's southwestern province of Sichuan left at least 3 people dead and 60 injured on September 16th, according to China's state-run media. Local authorities put the quake at 6.0-magnitude, while the US Geological Survey (USGS) put it at 5.4-magnitude on an 8-point scale. The quake hit in the early hours of the morning, with the epicenter located about 52 kilometers (32.3 miles) southwest of Yongchuan district in Chongqing, with an initial depth of 10 kilometers, according to USGS. The earthquake left at least 1,221 collapsed houses and more than 3,000 severely damaged homes, according to the Global Times. "I woke up to the tremor and saw the chandelier in my room swinging dramatically and the writing desk was shaking," one resident, surnamed Tang, told the Global Times. "It's been a long time since an earthquake of this magnitude has occurred." Chinese authorities launched rescue efforts in the morning, with the provincial government activating a level 2 response, the second highest in China's four-tier earthquake emergency response system, according to Xinhua. Luzhou City, home to about five million residents, was among the hard-hit areas. Thousands of soldiers and emergency workers have been sent on rescue efforts, along with rescue equipment, medical supplies, makeshift surgical vehicles and heavy machinery. Tents have been set up for evacuees in a nearby village. Experts say a more serious earthquake is unlikely, though there may be aftershocks, Xinhua reported. Sichuan is located along one of several seismic belts in China, which makes it prone to earthquakes. One local employee in Luzhou told the Global Times that though residents are used to earthquakes, they are usually of a lower magnitude -- and Thursday's quake was much stronger than average. A number of [...]

Go to Top