Known as a prairie state, Illinois benefits from the same rich glacial till as its neighbors. The southern majority of the state is part of America’s Corn belt. At the Northeastern most corner, the state rests against Lake Michigan.

Should you Use a Sand Cone Test in Construction?

It may seem at times that there are almost too many soil testing methods, but many are developed to fit certain scenarios or address issues with other testing methods. This is the case with the sand cone test, which is used to determine soil compaction and is an alternative to using a nuclear density gauge. But does this mean the sand cone test is worth using when working on construction sites? The Pros and Cons of the Sand Cone Test There are many benefits to performing a sand cone test, especially for those relying on a nuclear density gauge. With a sand cone test, you can get similar results at a much lower cost, without the need for radioactive material. The cost of the sand cone test apparatus is also fairly low, making sand cone testing relatively inexpensive. The apparatus consists of a plastic container, a metal cone with a valve and a high density base plate. Its also relatively small and portable, making testing possible pretty much anywhere. The sand cone test has its fair share of negatives as well, including: Easy to compromise samples during testing. Soil samples are sensitive to vibrations, shifting of particles, and any errors in set up of the test site Samples that contain mixed particles can be less accurate Samples that contain too much moisture content can be less accurate Long result time: 20 minutes (vs. nuclear gauge which only takes 1 minute for results) Technicians, of course, should be aware of the limitations of the sand cone test as many factors can skew its results. In other words, the sand cone test may not be worth using when working on construction sites, except to confirm observations and inform opinions about soil moisture and density. This is especially true when you consider that [...]

CPT Mini Track Rig – Our Most Compact Self-Powered Rig

New – The Mini-Track Rig provides all-terrain performance at an affordable capital cost! The latest addition to Vertek's robust line of self-propelled CPT rigs harnesses the popular 20-ton S4 Push System in a small but versatile package. This rubber-tracked rig is easy to maneuver, ideal for limited access areas, and maintains a low ground pressure of 4.5 psi. The S4 Mini-Track Rig provides a powerful carrier at an affordable price when compared to the cost of new construction equipment. Is the Mini-Track Rig right for your application? The Mini-Track Rig is ideal for situations where agility and low ground pressure are important At only 10.5 feet long, it can be transported to job sites with a pick-up and trailer The S4 CPT system's tilt mount increases stability on uneven terrain and provides a low profile during transport The S4 can be removed and attached to construction equipment or custom trailers, allowing for any number of configurations The Mini-Track Rig is available with many options to meet all your testing needs. Though small and light, the Mini-Track Rig provides convenience and functionality similar to Vertek's larger purpose-built CPT rigs. Optional features include: Mechanical or Hydraulic Clamp Diesel or Gas Engine 300,350,400, or 500 mm Anchor Decontamination System Remote Operation 120V AC Inverter Rod Rack For a full list of features, specifications and technical data, visit vertekcpt.com or download our full catalog of Geotechnical and Environmental products.

Beyond the Basics: Contamination Detection and Other Applications of CPT Equipment

Cone Penetration Testing equipment was originally designed – and is still most commonly used – to characterize subsurface soil behavior types. But when you invest in CPT equipment, you are getting the capability to do much more. A variety of sensors and in-situ samplers can be integrated into CPT modules, making CPT equipment a versatile and efficient choice for contamination detection, environmental site assessment, and other field applications. CPT equipment has several advantages over conventional hollow stem auger drilling and percussion drilling based methods, especially in contaminated soils. Specialized CPT tests can identify contaminants and determine the physical extent of the contamination with minimal disturbance of the soil, thus avoiding costly disposal of drill cuttings and minimizing contact between field personnel and potentially hazardous materials. Here’s an overview of some tests and technologies that you can harness via CPT equipment: Temperature: Temperature data is obviously useful in locating zones of different ground temperature, for example frozen soil. However, it can also help to identify soil contaminants that generate heat due to chemical or biological activity. Electrical Resistivity: The electrical properties of soil are changed when the soil is contaminated. For example, soils containing non-aqueous-phase (NAPL) compounds exhibit higher resistivity than normal, while soils containing dissolved organic compounds such as can be found in landfill leachates have significantly lower resistivity. Fluorescence Detection: Most hydrocarbons produce fluorescence when irradiated with certain kinds of light. Thus, hydrocarbon contamination can be efficiently detected by integrating LEDs of a particular wavelength (or sometimes lasers) into CPT cone modules. The detected wavelength of the fluorescent response to the excitation source is graphed in real time and is used to determine the areas of interest and further define contaminants. The integrated camera or video camera module can also be used to visually inspect in-situ characteristics such as [...]

Understanding the Relationship between SPT Data and CPT Data

As you know, Cone Penetration Testing is not the only method for determining the mechanical properties of soil. Another method is the Standard Penetration Test, or SPT: in this test, a borehole is drilled to a desired depth, then a hollow sampler is inserted and driven downwards with a hammer. The hammer blows are counted until the sampler travels the desired depth (usually 18”) – this number, denoted NSPT, indicates the mechanical properties of the soil. As with CPT data, a handful of corrections are commonly applied: for example, the N60 value indicates NSPT data corrected for the mechanical efficiency of a manual hammer, estimated at 60% at shallow overburden conditions. Since SPT is one of the most common in-situ soil testing methods, you may find it necessary to compare information from both SPT and CPT tests, or convert from one set of parameters to the other, for example from SPT N60 values to CPT tip resistance values. Several methods have been proposed for calculating this relationship. Below are two of the most frequently used: Robertson and Campanella: This method for correlating SPT and CPT data uses the following relationship between SPT N60 data and CPT tip resistance: (qc/pa)/N60 qc = tip resistance (psi) pa = atmospheric pressure (psi) Soil behavior type can be determined from this equation based on the following table: This is perhaps the simplest method for relating the results of these two tests, but it can cause some confusion when the results fall on the border of two soil behavior type zones, or in situations where the ratio of CPT to SPT data could indicate one of several different soil types. Jefferies and Davies: This is a more robust method for determining SPT N-values based on CPT data, or vice versa. It avoids the discontinuities of [...]

Human-Portable Hydraulic Power: The Vertek Lightweight CPT Push System

The Vertek Lightweight CPT Push System is the most portable hydraulic CPT push system on the market. Offering 10 tons of push force, yet compact enough to be transported and operated by a two-person team, this system is ideal for testing locations that would be inaccessible to a rig-based or truck-mounted system. Weighing only 480 pounds, the hydraulic load frame is can be transported to the job site via truck or small trailer, then unloaded and rolled to hard-to-access test locations by hand. The system is designed so that the handle weight is less than 25 lbs when tilted on its wheels for travel, and large tires make the system easy to roll on uneven ground. The hydraulic power pack and cylinders, weighing 430 lbs and 335 lbs respectively, are independent of the frame for ease of transportation. The system is easy to assemble and disassemble via hydraulic quick disconnects. The twin cylinders are coupled by a platen that can push or pull digital electronic or mechanical cones and water or soil samplers. The anchoring system includes four sturdy augers, a drive unit and all necessary tools. Watch the easy set-up and see the system at work in the video below. At Vertek CPT, we love to develop innovative yet practical CPT solutions with real ROI. Our Lightweight CPT Push System offers ultra-mobile yet robust hydraulic push power to bring your CPT business wherever you need to go. From lab applications to remote locations on rough terrain, this system is highly portable, economical, and provides enough depth and power for many types of soil tests. [/fusion_youtube]

Geotechnical Engineering Student Organization (GESO) at the University of Illinois at Urbana-Champaign

Source: Geotechnical Engineering Student Organization (GESO) at the University of Illinois at Urbana-Champaign - University of Illinois at Urbana-Champaign April 2017 March 2017 November 2016 September 2016 April 2016 March 2016 February 2016 January 2016 November 2015 October 2015 September 2015 November 2014 March 2014 January 2014 November 2013 October 2013 September 2013 February 2013 January 2013 November 2012   Geo-institute Geoengineering United States Universities Council on Geotechnical Education and Research Electronic Journal of Geotechnical Engineering Geotechnical Engineering Laboratory at the University of Tokyo Geotechnical Engineering Directory Earthquake Induced Damage Mitigation from Soil Liquefaction International Centre for Geohazards Soil Mechanics lab at Tokyo Metropolitan University VErification of Liquefaction Analysis by Centrifuge Studies (VELACS) Advanced Modeling of Ground Improvement on Soft Soils Field Measurements in Geomechanics International Association for Computer Methods and Advances in Geomechanics International Consortium on Landslides International Landslide Center National Geotechnical Experimental Sites Pile Dynamics Physical Modeling in Geotechnics (ISSMGE – TC2) Geotechnical Engineering Photo Album Natural Resources Conservation Service Soil Survey GESO at UIUC Facebook Group  

Drilling in Southwest Indiana at a 15-year peak

Indiana State officials say Southwest Indiana is experiencing a boom in oil and gas exploration, with a peak number of wells drilled over the past 15 years. The Indiana Department of Natural Resources Division of Oil and Gas released a report earlier this week that says oil and gas wells are being drilled in Indiana "At a pace that hasn't been seen for at least 15 years," according to Herschel McDivitt, director of the DNR Division of Oil and Gas. DNR officials say the division issued more than 450 drilling permits in 2006, a number that McDivitt expects to steadily increase during the next several years, due to the anticipated higher prices for crude oil and natural gas. "This is an exciting time to be in the oil and gas business," McDivitt said in a press release announcing the news. "While much of the interest is in drilling for crude oil, a growing number of wells are being drilled for natural gas, especially in the southwestern part of Indiana where companies are actively developing wells." McDivitt acknowledged that along with the increase in drilling applications has come a significant number of questions from landowners who have been approached by companies seeking to obtain leases from the landowners allowing them to drill on their properties. "Many landowners are unfamiliar with the process of leasing their land for oil and gas and are seeking more information about oil and gas operations and looking to find answers to their questions," McDivitt said. DNR has also made some changes in the Division of Oil and Gas's organizational structure. Jim AmRhein will be responsible for all inspections and compliance- related functions within the division's program. Previously, AmRhein was in charge of all permitting functions, as well as inspections and enforcement duties in central and northern [...]

Upcoming Tunneling Projects – Tunnel

2/10/2016 Upcoming Tunneling Projects CALIFORNIA Laguna Beach Tunnel   Stabilization   and   Sewer   Pipeline   Replacement Approved by the South Coast Water District Board of Directors in 2010 and the City of Laguna Beach in late 2013, the Tunnel Stabilization & Sewer Pipeline Replacement Project (Tunnel Project) is a 100-year solution to protect the environment, local economies and neighboring communities. The project comprises two key components: Tunnel Stabilization: The District will enlarge the size of the tunnel from an average of 6 to 9 ft. This will ensure safer working conditions and greater access for future pipeline maintenance and repair. Permanent shotcrete lining and steel supports will be installed at several locations where required, replacing rotten timber supports and removal of loose rock that currently exist. Pipeline Replacement: The District will install a new 24-in. pipeline throughout the tunnel. The current pipeline – also 24 in. in diameter – will be encased in concrete, but preserved for redundancy and emergency use. The cost to repair the tunnel is estimated at approximately $90 million and will be funded through low-interest state loans, grants and the District’s general fund. Shortlisted tunnel contractors announcement was anticipated for 2014-2015 with request for bids expected in 2015 and NTP in 2015-2016. Los Angeles The   North East   Interceptor   Sewer   (NEIS)   Phase   2A The North East Interceptor Sewer (NEIS) Phase 2A project is currently the northern extension of the NEIS Phase 1 project. The project will construct approximately 3.03 miles of 8-ft diameter sewer in tunnel and associated structures. The sewer will be constructed from the Division St. Shaft site, near the intersection of San Fernando Road and Cazador Street and terminate at the northern overflow parking lot for the Pony and Train Rides in Griffith Park, just north of the I-5 Griffith Park On/Off Ramps (I-5 Shaft Site) east [...]

World Tunnelling News

Jan 05, 2016 - Helsinki-Tallinn fixed link seems feasible Yle Uutiset Jan 04, 2016 - India awards large $1.5 billion road link contract India Times Jan 01, 2016 - Bangladesh to improve infrastructure BD News 24 Dec 30, 2015 - India's longest road link to open in July NDTV Dec 29, 2015 - India envisages first underwater link India Times - India Today Dec 29, 2015 - China opens longest lake crossing GB Times Dec 28, 2015 - Japanese court ruling on fatal ceiling collapse The Yomiuri Shimbun - Japan News Dec 28, 2015 - Shanghai completes 13th river link Shanghai Daily Dec 26, 2015 - Bids placed for Istanbul mega-project Daily Sabah Dec 25, 2015 - Complex Singapore road link delayed Straits Times Dec 25, 2015 - Ottawa LRT enters final phase Ottawa Sun Dec 22, 2015 - Rio Metro Line 4 needs more funding The Rio Times Dec 20, 2015 - Work starts on Auckland's City Rail Link Stuff.co.nz Dec 18, 2015 - Study looks at replacing old Baltimore rail link The Baltimore Sun Dec 14, 2015 - US transportation bill boosts Hudson rail project New York Times Dec 14, 2015 - Cost of Mumbai Metro Line 3 underestimated The Indian Express Dec 14, 2015 - Cologne LRT opens phase III Railway Gazette Dec 14, 2015 - Qatar progresses with rail infrastructure Doha News Dec 10, 2015 - Tunnelling to start on Shinkansen maglev line The Asahi Shimbun Dec 09, 2015 - Sweden opens its longest rail tunnel International Railway Journal Dec 04, 2015 - Barge launches Thames Tideway construction Tideway news release Dec 03, 2015 - Memorial ceremony for Sasago tunnel collapse Japan Today Dec 02, 2015 - TT2 recognised for work with the disabled Shield's Gazette Nov 30, 2015 - Group to lobby for Malta-Gozo fixed [...]

Geotechnical Engineering | Civil and Environmental Engineering at Illinois

  https://www.youtube.com/watch?v=0BmZumw2Odo https://www.youtube.com/watch?v=qfhrUYJHRjc https://www.youtube.com/watch?v=SXRv7aSNUtI Geotechnical Engineering The Geotechnical Engineering program within CEE at Illinois has educated generations of experts in the use of natural material such as soil and rock in combination with engineered material such as concrete, steel and geosynthetics, in the design of dams, tunnels, on-shore and off-shore reclamation for airports, landfills, deep excavations, and foundations for structures of all kinds. Alumni of CEE's Geotechnical Engineering program have made significant contributions to major projects like subway systems in the nation’s largest cities, the Hoover Dam and the World Trade Center. Today, geotechnical engineering faculty members have expertise in earthquake engineering, soil mechanics behavior, foundation engineering, rock mechanics and tunneling, and advanced numerical modeling techniques. Research interests of the Geotechnical Engineering faculty include: Deep excavations Earthquake engineering Numerical modeling Static and dynamic Soil-structure interaction. Engineering properties, construction problems, and ground modification technology in soft clays and silts, stiff clays and soft rocks, and granular materials Soil-structure interaction Reliability-based design Mechanically stabilized earth and earth support systems Ground improvement methods and their effect on structures Soil liquefaction during earthquakes The static and seismic stability of natural and excavated slopes   Source: Geotechnical Engineering | Civil and Environmental Engineering at Illinois Geotechnical Engineering Illinois

Go to Top