Financing of New CPT Equipment Now Available

We're pleased to announce a partnership with Oakmont Capital Services as our preferred lending partner allowing Vertek CPT customers in the U.S. and Canada to enter the CPT business with as litte as no money down! Oakmont Capital Services is a full-service provider of commerical equipment financing. Application-only financing from $5,000 to $300,000 Most companies approved with 100% financing Quick turnaround on applications with most decisions made within 2 to 4 hours Competitive rates and terms (better than most banks) Financing available on new/used equipment with terms from 12 to 84 months Financing for start-up companies with a background in related industry U.S. and Canadian customers only Apply to finance your CPT purchase!

How to Read a CPT Soil Behavior Type Chart

As you analyze your CPT data, you are likely to come across several different charts designed to classify soil type based on CPT results.If you are new to the field, these charts can be a bit confusing, so here’s a brief overview of one of the more common chart types. Soil behavior classification via CPT is fast, efficient, and frequently automated via software. Still, understanding the classification method is important, as it will help you to recognize and determine the cause of any errors or irregularities in the data. First of all, it is important to note that, since a traditional CPT test does not involve a soil sample, these charts are not designed to tell you the exact makeup of the soil. Instead, CPT tests indicate the soil’s physical and mechanical properties, or how it behaves. Hence, a CPT soil classification chart is technically referred to as a Soil Behavior Type (SBT) chart. Most CPT soil charts are derived from tip resistance (or normalized tip resistance, Qt) and friction ratio data. The tip resistance is measured in some unit of pressure (Bars, Pa, PSI, etc) and is usually plotted on the vertical axis. This axis is logarithmic, meaning it increases by orders of magnitude rather than linearly as it gets further from the origin. Thus you will see units of 10, 100 and 1000 marked an equal distance apart. The friction ratio is given on the horizontal axis. It is the ratio of the sleeve friction divided by the tip resistance: the two units of pressure cancel, so this unitless ratio is multiplied by 100 and given as a percent. This percentage is generally low: 10% would be considered a high friction ratio, since the CPT cone experiences greater pressure on its tip due to the shear strength of [...]

Intro to Seismic CPT

What is Seismic Cone Penetration Testing? Seismic CPT or SCPT is a method of calculating the small strain shear modulus of the soil by measuring shear wave velocity through the soil. The small strain modulus is an important quantity for determining the dynamic response of soil during earthquakes, explosive detonations, vibrations from machinery, and during wave loading for offshore structures. The wave speeds and moduli derived from seismic CPT measurements aid in the determination of soil liquefaction potential and improve the interpretation of surface seismic surveys by providing wave speed profiles as a function of depth. Seismic waves from SCPT tests have been detected at depths of up to 300 feet. How does it work? SCPT testing is performed as part of a normal CPT or CPTU test. Equipment consists of a CPT rig, push system, and: SCPT Cone: The SCPT cone is a CPT or CPTU cone that is equipped with one or more geophone sensors. These sensors measure the magnitude and arrival time of seismic shear and compression waves. Wave Generator: Seismic shear waves are generated at the soil surface in one of two ways: The simplest method is to press a steel bar onto the ground lengthwise using the weight of the CPT rig, then strike the end of the bar with a large hammer. An electronic trigger attached either to the hammer or the bar records the exact time of the strike. Another method uses an electronic wave generator attached to the CPT rig. This method increases repeatability and reduces physical strain and testing time for the field team. The CPT test must be paused briefly at the desired intervals to perform the wave generation and data collection. These pauses may be used to conduct a pore pressure dissipation test as well. Data Acquisition System: As [...]

CPT Dictionary: Soil Shear Strength

Shear strength is the ability of a material to resist shear forces—that is, forces that produce a sliding failure in the material parallel to the direction of the force. The diagram at right demonstrates shear stress, along with tensional and compressional stress. (What's the difference between a stress and a force? Stress is defined as force per area.) How is this relevant to soil testing? Well, consider a sliding failure in soil, such as occurs along a fault plane in an earthquake. Shear strength tells us a great deal about how the soil will behave under shear forces and during changes in stress, for example due to an earthquake or excavation. The in-situ shear strength of soil is difficult to measure, and many methodologies for doing so have been proposed. In general, estimating undrained shear strength--that is, the shear strength of the soil with in-situ moisture--using the CPT is accomplished via the relationship between overburden stress and cone resistance, as shown in the equation below. su = (qc – σvo)/Nk Where: su = undrained shear strength (unitless) qc = cone resistance (psi) σvo = overburden stress (psi) Nk = empirical cone factor (a unitless constant) Nk is determined in the lab, for example via triaxial compression tests. The exact value varies based on the type of reference test used, so it is important to be consistent in this regard. Most test methods return values between 10 and 30, varying with factors such as OCR (over-consolidation ratio), pore pressure, and soil plasticity. Several alternative methods may be used to estimate undrained shear strength via CPT, depending on the test conditions and available data. One such method uses pore pressure at u2 (directly behind the cone) in place of overburden stress: su = (qc – u2)/Nk The disadvantage of this method is [...]

Seismic Averaging in SCPTu testing

Did you know that our CPTSND Data Acquisition program can average repeat seismic strikes? Once you have a strike on the screen, simply accept (retain) the strike and then add another strike of the same type ( A strike for example). This second strike will display below the first strike and when the second strike is accepted (retained) it will be averaged with the first strike and only the averaged strike will remain on the screen. If a third strike is added and then accepted (retained) it will be averaged with the result of the first two. (NOTE: Our software does not retain all the individual strikes- once they are averaged only the average is on file) Averaging strikes is recommended by some of the top GeoTechs in the nation!

Go to Top