Corps honors Flynn for geotech work

Source: Corps honors Flynn for geotech work EDWARDSVILLE — Southern Illinois University Edwardsville School of Engineering (SOE) alumnus Stefan Flynn has been recognized as the 2021 U.S. Army Corps of Engineers (USACE) Early Career Geoprofessional of the Year. “While simply being nominated for this award meant a lot to me, I was humbled to have been selected,” said Flynn. “It was equally exciting to see an award created for early career professionals. This award is a testament to the leadership of the Geotechnical, Geology and Materials Community of Practice and their efforts to support, involve and recognize our employees at all professional levels.” “For those organizations that are not already doing so, I highly encourage you to consider ways to recognize your younger/early career professionals,” said Flynn. “I am both proud and grateful to work for such a dedicated and impactful organization as the USACE with our great teams across the nation, within the Mississippi Valley Division, and at home in the Rock Island District.” In 2014, while pursuing a bachelor’s in civil engineering at SIUE, Flynn began working with the USACE as a student intern at the St. Louis District. Upon graduation in 2015, he was offered a full-time job with the Rock Island District. He currently serves as a senior geotechnical engineer and conducts design, construction and inspection of dams, levees and navigation structures. The Early Career Geoprofessional of the Year award recognizes Flynn for exhibiting professionalism and commitment to excellence through: • Enhanced regional and/or national projects, • Achievements and innovations in geotechnical engineering, geology or materials engineering, • Contributions to professional/technical societies, • Enhanced relationships with peers, partners and contractors, and • Demonstrated exemplary levels of trust and integrity. During his time at SIUE, Flynn served as a research assistant and conducted research for the Illinois [...]

Oil wells in L.A. and Residential Health Problems

Source: Oil wells in L.A.: Nearby residents grapple with health problems Magali Sanchez-Hall, a Wilmington resident for over two decades, has struggled with asthma her entire life. She says the health issue stems from her proximity to oil and gas drilling. Emma Newburger | CNBC LOS ANGELES, CALIF. — Stepping out of a coffee shop near Interstate 110 in the Wilmington neighborhood of Los Angeles, you’re immediately hit by a foul odor. Magali Sanchez-Hall, 51, who’s lived here for more than two decades, is used to the smell of rotting eggs wafting from the hundreds of oil wells operating in the neighborhood. She’s used to her neighbors describing chronic coughs, skin rashes and cancer diagnoses, and to the asthma that affects her own family, who live only 1,500 feet from a refinery. “When people are getting sick with cancer or having asthma, they might think it’s normal or blame genetics,” she said. “We don’t often look at the environment we’re in and think — the chemicals we’re breathing are the cause.” Wilmington, a predominantly working-class and Latino immigrant community of more than 50,000 people, has some of the highest rates of asthma and cancer in the state, according to a report by the non-profit Communities for a Better Environment. It’s surrounded by six oil refineries and wedged in by several freeways and the ports of L.A. and Long Beach. California, the seventh-largest oil-producing state in the U.S., has no rule or standard for the distance that active oil wells need to be from communities. For many Californians, especially Black and brown residents, acrid smells, noise and dirt from oil production is part of the neighborhood. Walking around Wilmington, pumpjacks are visible in public parks, next to schoolyards where children play and outside of people’s windows at home. At night, the sky is lit [...]

Studying the ground under your feet: Interview with Taylor Hall about rock and soil stability

Source: Studying the ground under your feet: Science Moab speaks with Taylor Hall about rock and soil stability | Get Out & Go | moabsunnews.com Moab is renowned for its biological soil crusts, but what’s happening underneath all that crusty black — with the soil and rock itself? This week, we speak with geotechnical engineer Taylor Hall, owner of the Moab Geotechnical Group, about soil mechanics, engineering tools, and how he decided — at age 15, in a McDonald’s — to start working with the dirt. Science Moab: What is geotechnical engineering? Hall: Geotechnical engineering generally deals with rock and soil mechanics and physics: how those materials will respond to structures or just how they respond to gravity. We might look at something like a bridge to understand its foundations, or we might look at a landslide that gets triggered by natural causes. We’re fortunate to be able to come in there and tell you how things are responding and why and what to expect. Science Moab: How do you test soil? Hall: When geotechnical engineering got its feet in the 1940s and 1950s, they would sample soil by drilling a hole and driving a sampler into the ground using a fixed-weight hammer. Using that method, we were able to acquire a sample and get some resistance associated with that sample. That's much of what we do today, but we do it now because it's backed by 60 or 70 years’ worth of empirical relationships. Generally, you're only dealing with one or two such holes, and you have to use them to characterize a whole site. It's tough, but that's why I chose geotechnical engineering: because no two sites are the same. It provides the opportunity to really think on your feet. Science Moab: Once you’ve taken measurements, how do [...]

Can Enzymes Be the Key to Replacing Concrete in the L.A. Basin?

Source: Is L.A. Like a City Built on Jell-O? Can Enzymes Be the Key to Replacing Concrete? Chukwuebuka Nweke May Have the Answers - USC Viterbi | School of Engineering CHUKWUEBUKA NWEKE. Even as a child 8,000 miles away in Nigeria, Chukwuebuka Nweke remembers the 1995 Kobe, Japan earthquake. “It was a massive, devastating event,” Nweke recalled in an interview earlier this year. “That was probably the first earthquake that I got to see (video) footage about.” Now, Nweke, a geotechnical civil engineer, is a new assistant professor in the Sonny Astani Department of Civil and Environmental Engineering. Seismic hazard modeling — how the ground shakes and how that varies from place to place — is one of his key focal areas, with an aim to helping us allocate resources with priority toward the most vulnerable structures. “Some places could have a lot more damage depending on a number of things, including what’s underneath the ground and what kind of buildings are on there,” he said. “That coupled with information like what kind of service the structure provides or the density of the residing population helps determine the risk level.” For example, Nweke said, if an earthquake takes place in the middle of the desert, with a low or null population, even very large shaking wouldn’t be of great concern. However, in the L.A. basin, it’s a different story, Nweke said. “I specialized primarily in seismic site response, where I’m trying to see how much an earthquake is amplified in areas that are softer, like Los Angeles — the entire basin from Westwood to Orange County is very soft compared to the adjacent mountains,” he said. Nweke, whose scientific curiosity initially stemmed from watching various Discovery Channel series on meteors and the impact of dinosaurs, said Los Angeles is of particular interest in [...]

Report: Drilling spills ruined wells and polluted streams in Westmoreland, across Pennsylvania

Source: Report: Drilling spills ruined wells and polluted streams in Westmoreland, across Pennsylvania | TribLIVE.com Edward Mioduski holds a jar of water produced by his Loyalhanna Township well in June 2017, a month after the water became polluted during drilling underneath nearby Loyalhanna Lake. Alice and Edward Mioduski point to where the Mariner East II pipeline cuts across their farm in Loyalhanna Township. It has been more than four years since Edward and Alice Mioduski of Loyalhanna Township have been able to drink water from their well near Loyalhanna Lake. Drilling mud mixed with the mineral bentonite leaked from the hole that Sunoco Pipeline L.P. was boring underneath the lake in May 2017. It bled into the aquifer that their 95-foot-deep well had tapped into for decades. The crystal-clear water turned cloudy gray with little white blobs floating around. “Within a short time, it went to hell,” Alice Mioduski said. Before that, their water was “the nectar of the gods. We never ran out of water.” Now, they have a 1,500-gallon plastic tank in their backyard that provides water for showering and washing clothes — when it doesn’t freeze in the winter — paid for by Sunoco. A filtration system inside the house provides water for drinking and cooking. The damage to streams and water supplies by the leaks and lost fluids during construction of the 307-mile Mariner East II pipeline is outlined in a 64-page indictment handed down last week by a statewide investigating grand jury. Energy Transfer L.P. of Dallas, a successor to Sunoco Pipeline, was slapped with 48 criminal violations of the Clean Streams Law. Fluids that were to return to the surface and be dumped into a drill pit for reuse simply disappeared underground or bubbled up to the surface. The grand jury alleges [...]

US: Magnitude-6.5 earthquake occurs east of Chignik, Alaska

Source: US: Magnitude-6.5 earthquake occurs east of Chignik, Alaska Oct. 11 A magnitude-6.5 earthquake occurred off the eastern coast of Alaska Peninsula at around 01:10 AKDT Oct. 11. The epicenter was about 114 km (70 miles) east of Chignik. The tremor occurred at a depth of about 46 km (28 miles). Moderate shaking was likely felt across northern parts of the Aleutian Islands and much of Kodiak Island. There have been no initial reports of damage or casualties as a result of the earthquake; however, significant damage is unlikely. It could take several hours until authorities can conduct comprehensive damage assessments, especially in remote areas. Aftershocks are likely over the coming days. Authorities have not issued any tsunami advisories. Officials may temporarily shut down transportation infrastructure in the tremor zone to check for damage. Minor disruptions could occur during shutdowns, but service will likely resume quickly if no damage is found. Utility outages are possible, particularly near the earthquake's epicenter.

Stress in Earth’s crust determined without earthquake data

Source: Stress in Earth's crust determined without earthquake data Scientists at Los Alamos National Laboratory have developed a method to determine the orientation of mechanical stress in the earth's crust without relying on data from earthquakes or drilling. This method is less expensive that current approaches, could have broad applicability in geophysics and provide insight into continental regions lacking historical geologic information. "We utilized the nonlinear elastic behavior in rocks and applied a new technique to monitor the orientation of the maximum horizontal compressive stress in rocks in parts of Oklahoma and New Mexico," said Andrew Delorey of Los Alamos. "The orientation of that maximum horizontal compressive stress reveals which fractures in the rock will be active." North-central Oklahoma was selected because induced seismic activity has been ongoing in the region after decades of injected wastewater from oil and gas operations. That seismic activity occurs on faults optimally oriented in the regional stress field. North-central New Mexico was selected to compare the results to a geologic setting straddling a continental rift separating the Colorado Plateau from a stable section of the earth's crust. The scientists determined that the earth exhibits stress-induced anisotropy of nonlinear susceptibility that is aligned with the maximum horizontal compressive stress in these two different geologic settings. Rocks become stiffer when compressed and softer when extended, but this effect isn't instantaneous. The rate is faster in the orientation where the ambient stress field is most compressive. By measuring this rate in different orientations, scientists can determine the orientation where ambient stress is most compressive. Determining the geophysical stress orientation, or the direction of maximum horizontal compressive stress, is usually determined by drilling narrow, deep boreholes. However, borehole drilling is expensive and only provides a single data point. Additionally for vast regions, the geophysical data simply hasn't been collected because [...]

How the Concrete Vibrator Changed Concrete Mix Design

Source: How the Concrete Vibrator Changed Concrete Mix Design | For Construction Pros Over the last 60 years, concrete vibrators have evolved into a necessary machine for concrete jobs. Industry studies have highlighted separation issues, vibration energy, surface defects, and mix incompatibilities—leading to the development of a more predictive concrete placement experience. Concrete vibration dates to the late 1960s when Thomas Reading, an engineer from the U.S. Army Corps of Engineers, set vibration placement recommendations through vibration tests. At the time, the normal slump of structural concrete was three to four inches, had a “peanut butter” like consistency, and placed in forms by a concrete bucket. Reading used a larger horsepower motor to maintain a maximum vibrator speed that ran the vibrator heads for the current consistency of mixes. Reading concluded that the vibrator frequency should never exceed 10,000 vibrations per minute (vpm) due to his observation of concrete material separation. At that time, the American Concrete Institute (ACI) 309 Consolidation Guidance Specification reflected Reading’s research and limited the vibrator frequency to that maximum frequency. Surface voids were mistaken for entrapped air. Through today’s research, we’ve come to understand that surface blemishes come from vibration-frequency-forced bleed water. Ten years later, mix designs were being transformed by a chemical additive called a water-reducing agent (WRA) to allow for a more workable concrete mix for the future of economical concrete placements by pumping instead of concrete buckets. By the end of the next several decades, the volume of pumped commercial concrete reached 80%. The increased use and type of WRAs (plasticizers) allows for more possibilities of bleeding. With the increased bleeding in pumpable mixes, present concrete mix designs started to take on a "soup-like" consistency. While the vibrator design remained the same, manufacturers began to increase the amount of vibrator frequency. As [...]

California agency finds significant liquefaction

Source: State agency finds ‘significant liquefaction’ | Local News Stories | hmbreview.com The green in this map indicates areas on the coast that may be prone to liquefication, according to the California Geological Survey. Illustration courtesy California Geological Survey The California Geological Survey last week released new hazard maps for San Mateo and Contra Costa counties that detailed where landslides and soil liquefaction could likely occur in the event of a significant earthquake. The CGS’s Seismic Hazard Zone maps found “significant” liquefaction zones in parts of San Mateo County, particularly in Half Moon Bay, Miramar and San Bruno. The state has already mapped most of the Peninsula, including Montara Mountain, Woodside and San Mateo. But La Honda and San Gregorio are two notable rural areas that don’t have data accessible yet. Each map, a roughly 60-mile zone called a “quadrangle,” accounts for three types of geologic issues caused by earthquakes: a fault rupture, landslide and liquefaction, which describes the process when seismic tremors cause soil to mix with groundwater and behave like quicksand. The state agency identifies most of the city of Half Moon Bay as inside a liquefaction zone. Its quadrangle is 74 square miles, and the liquefaction zone spans the city’s entire coastline and more, including most of the neighborhoods up to Pilarcitos Creek, including El Granada, Miramar and rural areas like Purisima Creek Redwoods Preserve. The map also identifies fault zones on both the east and west sides of the Half Moon Bay Airport, and more than half of Montara Mountain’s quadrangle is at risk of earthquake-induced landslides. The CGS maps were drafted in February but became official on Sept. 23. Land management agencies and cities use hazard maps to identify properties that require site-specific studies before breaking ground on new development. [...]

Concrete Dam Safety Inspection with Ground Penetrating Radar GPR

Source: Concrete Dam Safety Inspection with Ground Penetrating Radar GPR | For Construction Pros A non-destructive with ground-penetrating radar inspection could save time and money during investigations of this critical element in concrete infrastructure. GSSI using the Structure Scan™ Mini XT to refine the dam survey area. Geophysical Survey Systems As the world struggles to improve its critical infrastructure, many are seeking out non-destructive testing (NDT) methods that can help to accurately determine what can be repaired and what needs to be replaced. In the field of dam safety, NDT methods are seen as a way to cut down on the actual work that has to be done, while making sure that condition data is most accurate. Engineers, facility managers, and dam operators need accurate information on the structural health of their facility to take decisive action to prevent catastrophic incidents. Earthquake monitoring systems can assist decision-making by providing predictive data before an earthquake and evaluating the structural integrity of the dam or levee before and immediately after an earthquake (Dam Safety Group,  Ground-Penetrating Radar for Dam Investigative Applications, 2021) Among the available NDT methods, ground-penetrating radar (GPR) is growing in importance for dam evaluation applications. Increasingly, both public- and privately-funded dam owners are looking to GPR technology to inspect the dam infrastructure and surrounding areas. GPR can be cost-effectively integrated with other types of ground surveys to build a visual understanding of the overall subsurface of the site. The technology can be rapidly deployed, provides an effective means to evaluate subsurface information, and contributes to continuous monitoring and condition assessment throughout a structure’s life. In response to the need for the best possible NDT methods, several industry experts founded the Dam Safety Group, which provides a wide range of geophysical and seismic techniques and technologies to address non-invasive [...]

Go to Top