Sichuan China Earthquake

Source: Sichuan, China: Earthquake leaves three dead and 60 injured - CNN An earthquake in China's southwestern province of Sichuan left at least 3 people dead and 60 injured on September 16th, according to China's state-run media. Local authorities put the quake at 6.0-magnitude, while the US Geological Survey (USGS) put it at 5.4-magnitude on an 8-point scale. The quake hit in the early hours of the morning, with the epicenter located about 52 kilometers (32.3 miles) southwest of Yongchuan district in Chongqing, with an initial depth of 10 kilometers, according to USGS. The earthquake left at least 1,221 collapsed houses and more than 3,000 severely damaged homes, according to the Global Times. "I woke up to the tremor and saw the chandelier in my room swinging dramatically and the writing desk was shaking," one resident, surnamed Tang, told the Global Times. "It's been a long time since an earthquake of this magnitude has occurred." Chinese authorities launched rescue efforts in the morning, with the provincial government activating a level 2 response, the second highest in China's four-tier earthquake emergency response system, according to Xinhua. Luzhou City, home to about five million residents, was among the hard-hit areas. Thousands of soldiers and emergency workers have been sent on rescue efforts, along with rescue equipment, medical supplies, makeshift surgical vehicles and heavy machinery. Tents have been set up for evacuees in a nearby village. Experts say a more serious earthquake is unlikely, though there may be aftershocks, Xinhua reported. Sichuan is located along one of several seismic belts in China, which makes it prone to earthquakes. One local employee in Luzhou told the Global Times that though residents are used to earthquakes, they are usually of a lower magnitude -- and Thursday's quake was much stronger than average. A number of [...]

Parameters Variation Model Customization and Sensitivity Analyses

Source: Parameters Variation: Model Customization and Sensitivity Analyses Parameters Variation Model Customization and Sensitivity Analyses A well-known engineering challenge in the framework of finite element (FE) analysis-based design is the large number of input factors involved in geotechnical computational models. There is always a significant amount of uncertainties associated with the properties of geomaterials, being naturally highly heterogeneous materials. In the context of model calibration and validation, conducting a sensitivity analysis is very important. This can determine the key factors which govern the system and efficiently characterize the geotechnical variability for any considered design problem.   Powerful mechanisms for the consideration of parameter variation are also very interesting for speeding up FE model creation and automating results in post-processing. These are also quite useful in reducing model definition for specific types of engineering problems (excavation wall of a specific type under simple ground conditions, simple tunnel shape in uniform rock mass, etc.) to a limited number of parameters that can be inputted in a text file or Microsoft Excel spreadsheet without expert knowledge of the PLAXIS user interface and different modeling techniques and FE know-how. The sensitivity analysis and parameter variation tool in PLAXIS A sensitivity analysis determines how different values of an independent variable affect a particular dependent variable under a given set of assumptions. In other words, sensitivity analyses study how various sources of uncertainty in a mathematical model contribute to the model's overall uncertainty. The Sensitivity Analysis and Parameter Variation tool (see Figure 1) can be used to evaluate the influence of model parameters on calculation results for any particular PLAXIS FE model: The Select Parameters tab sheet will first provide information about all the parameters that can be changed to perform the sensitivity analysis. Available parameters include most model parameters of the data sets for soil and [...]

A Climate Change-Induced Disaster in Denali National Park

Source: A Climate Change-Induced Disaster in Denali National Park | Time The Times has recently showcased an article on the current rockslide situation in Denali National Park. The effects of climate change have been dramatic with the current melting of the permafrost. The National Parks Service has recently upped through gravel removal of the Pretty Rocks Landslide in an effort to keep up as the rapidly thawing permafrost picks up pace. Alaska is right now recognized as the country’s fastest-warming state. The landslide hit unprecedented speed 4 weeks ago causing the team to close the back half of the park weeks earlier than anticipated. This only signals bad news as reservations are canceled in the short term and the long term implications are yet unknown. “This is the canary in the coal mine for infrastructure disruption in Alaska,” says the Camp Denali lodge owner Simon Hamm. “If things continue on the path they’re on, it’s not going to just be Pretty Rock—it’s going to be half of the Alaskan highway system.” Rapid deterioration Denali National Park is one of the U.S.’s largest national parks at 6 million acres, and sits about four hours north of Anchorage. While the entrance to the park is certainly beautiful, many people prefer to hop on buses to access the park’s marquee attractions deep down its single 92-mile road: views of Mt. Denali (formerly Mt. McKinley), the highest peak in North America at 20,000 feet; the gleaming Wonder Lake; rolling mountainsides that contain an abundance of wildlife, including grizzly bears, moose, caribou and bighorn sheep. About halfway along the road lies the Pretty Rocks Landslide, a slowly sliding section of earth that acts more like a glacier than a rockfall. Since the 1960s, permafrost deep below the earth’s surface has thawed, causing the soil and [...]

Geotechnical Instrumentation and Monitoring Consumption Market Size to Witness Huge Growth by 2027 | By Top Leading Vendors – Keller, Fugro, Nova Metrix, Geokon, Geocomp, Sisgeo, Cowi – The Daily Chronicle

Source: Geotechnical Instrumentation and Monitoring Consumption Market Size to Witness Huge Growth by 2027 | By Top Leading Vendors – Keller, Fugro, Nova Metrix, Geokon, Geocomp, Sisgeo, Cowi – The Daily Chronicle

Why Would You Need a Track CPT Rig?

Vertek CPT wants to ensure that you have the right equipment to grow your business. As you are going through the CPT rig purchase process, we’ll have extensive conversations to ensure that we are both on the same page when it comes to where you will be testing, what types of tests you can most easily sell, and which rig or rigs will help you to make the most money. Track Rig Features As you look around our site, you’ll see that some rigs are built on tracks, as opposed to truck beds with wheels. As per with construction equipment, you might expect the tracked equipment to be larger, with CPT rigs the tracked units tend to be smaller. This is because tracked rig CPT platforms are designed to not only traverse and work in difficult terrains, but also to be highly maneuverable around obstacles such as trees, rocks and gulleys. Remember, CPT testing may be specified by your customer for pre-construction activities, meaning that it takes place on a site with little preparation. Having a highly maneuverable platform with low ground pressure can make the difference between you being able to win certain jobs and not. Track rigs are usually designed in order to distribute the weight of the rig over more square inches of contact area. This helps to minimize damage to sensitive areas as well as help the rig not get stuck in less than optimum ground conditions. The overall rig footprints are designed so that the units can be effectively trucked to sites within your service area. Track rigs are designed for deep pushes in tough geologies and the Vertek CPT tracked rigs push from about 10 tons up to 25 tons. With the right combination of weight, ease of maneuverability and set-up features, a tracked [...]

Measuring the Moisture Content of Soil Using CPT

Measuring soil moisture content can be important for a variety of reasons. In placing underground electrical equipment or digging tunnels, it can be essential to know exactly what soil moisture conditions look like at specific depths. Early CPT test procedures used the standard CPT output data of cone resistance, sleeve friction and friction ratio to identify all of the parameters underground. When it comes to soils that have some moisture content or are saturated, it can be helpful to use a boring rig to obtain soil samples at depth close to the first CPT sounding. This enables you to ‘calibrate’ your rig to the site to ensure that the interpretations of the test data are accurate. Because establishing subsurface moisture content can be safety-critical in certain cases, Cone Penetration Testing methodologies have evolved to provide relative soil moisture content data. It is now possible to measure soil moisture more directly at the cone head vs. inferring what the moisture might be through interpreted sounding data. One method of measuring the presence of water is with a ‘piezocone’. This is a CPT cone that is fitted with a device that measures pore pressure. As the cone penetrates into saturated soils, hydraulic (water) pressure is exerted on the instrumented cone. By watching this pressure increase and decrease as the cone is driven deeper into the ground, it is possible to measure the presence of moisture at depth. This type of approach is better suited to soil conditions in which it is expected for the soil to be fairly wet to saturated conditions. Another method of establishing the extent of the presence of water is by using electrical sensors such as a dielectric probe, which measures soil electrical conductivity. This can be a useful practice and can be helpful in soils with less [...]

LED Fluorescence Detectors and Fuel Fluorescence Detection (FFD)

Hydrocarbons: including gasoline, kerosene, diesel fuel, jet fuel, lubricating and hydraulic oils, and tars and asphalts contain Polycyclic Aromatic Hydrocarbons (PAH’s). Polycyclic Aromatic Hydrocarbons (PAH’s) distributed in soils and groundwater fluoresce when irradiated by ultraviolet light. Because different types of PAHs fluoresce at different wavelengths, each has its own fluorescence signature. Using an instrument that measures the intensity and wavelength of the fluoresced hydrocarbon enables the assessment of the hydrocarbons present. This makes UV Fluorescence a useful technology to use in characterizing surface, subsurface and groundwater hydrocarbon contamination. We call this Fuel Fluorescence Detection (FFD). What's the right fluorescence detector for you? Using handheld UV lights enables site technicians to establish the nature and distribution of contamination above ground. For surface spills such as what gathers along a shoreline or for surface based operations such as above ground tanks and pipes, this can be a useful place to start. For underground storage tanks a useful way to begin site characterization is with a subsurface probe. Engineers trying to establish the limits of the ‘plume’ or the depth of the contaminant as it travels underground. Plumes will extend outward, downward and upward depending upon factors such as the flow of groundwater and the confining layers of clay and rock. Leveraging the ability to generate and measure fluorescence underground requires a step up in technology. In the case of CPT, a UV light source is placed in the cone itself. Fiber-optic cables transmit the resulting fluorescence to the surface where the intensity and wavelength can be measured. Because of the efficiency of CPT, large and complex sites can be characterized quickly and efficiently. The data logs are available immediately to influence critical decision-making which can help to manage costs in the long term. For instance monitoring wells may need to be installed [...]

Attending CPT Symposium 2014 Las Vegas, Nevada

See The Vertek S4 Push System in Person! The 3rd International Symposium on Cone Penetration Testing will be held at the Mandarin Oriental hotel in Las Vegas, Nevada, May 12-14, 2014. The theme of the Symposium is the solution of geotechnical and geo-environmental problems using the Cone Penetration Test (CPT). We'll be at booth #1 and also setup outside with our new S4 Push System which is designed to be attached to a wide variety of equipment. Learn more about our entire line of products and data acquisition systems.

CPT Case Study: GEI Consultants

30 years of Cone Penetration Testing with GEI We're proud of the relationship we have with our long time customers. We succeed together. One of these groups is GEI Consultants, which has been delivering engineering services around the globe since 1970. Sean Brady, Senior Instrumentation Specialist with GEI, provided CPT University with background on their operation as it pertains to their CPT efforts. Briefly describe GEI’s engineering focus. What do you do for whom? GEI is a medium size engineering firm with around 700 employees in the United States. Our business line within GEI is Geo-technical, non-destructive testing, and geophysics. Our engineering’s have designed over 75% of downtown Chicago’s foundations and most of the tallest buildings in the world. We often are part of the design team when difficult and challenging soils are encountered. We perform CPT’s on earthen dams/embankments, river sediment depths, USCOE projects from Ft. Peck Montana to New York, RR alignments, bridge embankments, and Power plants. A little of everything you can imagine from Water, RR bridges, Landfills, stability of tail basins for the mines. We also oversee other companies performing CPT. We just worked in Asantana, Kazahkstan overseeing a new energy exposition 2016 project for both SPT’s and CPT. Also have overseen CPT testing in Doha, Qatar. When did CPT first become of interest and why? We have over 30 years of CPT testing experience. In the late 80’s we purchased a 30T CPT truck and traveled around the US performing CPT on challenging geo-technical projects. In the mid-90’s we sold our truck and started to perform CPT testing behind drill rigs. At the time we had a fleet of 18 drill rigs from track mounted, ATV, truck mounted, Barge mounted, etc. We get involved with delicate soils all the time. In some cases even when [...]

Cone Penetrometer Testing via Speed Lock Rods

The strongest direct push rods in cone penetration testing. Unsurpassed Joint Strength Vertek manufactures a full line of CPT push rods with our proprietary Speed Lock dual-lead thread design. Speed Lock Rods provide unsurpassed joint strength, up to 50% stronger than industry standard V-threads. Our unique rope thread design uses less of the available wall thickness and balances the strength between the male and female thread ends. Speed Lock coupled joint achieves nearly 90% of the strength of the heat treated rod stock. Increase Speed, Reduce Operator Fatigue Our dual-lead thread provides fast coupling; 2.5 turns to couple or uncouple compared with 5-7 turns for competitor’s rods improving worksite productivity. Flexibility and Adaptability to Variety of Cones Speed Lock Rods are available in standard 1.44” and 1.75” diameters. Custom sizes include 2”, 2.25” and 2.5”. Vertek also manufactures custom adapters to permit use of our advanced thread design with your current inventory of CPT equipment. Make the most of your CPT rig and cone penetrometer testing equipment with Vertek Speed Lock Rods!

Go to Top