Whether you are just learning about geotechnical engineering and its related fields or you are a veteran looking at current materials, these resources outline the basics. Geotechnical engineering focuses on the soil beneath our feet. The structural properties of the ground can affect what types of buildings can be built. Additionally, geotechnical engineers can conduct tests on soil and concrete properties. Covered in this section are a variety of articles about Cone Penetration Tests, drilling, different types of augers and more.

Soil Electrical Conductivity

In terms of measuring soil contamination, measuring soil electrical conductivity can provide useful information for a more complete site characterization study. Measuring sub-surface soil electrical conductivity is becoming less expensive as well as faster and easier. This form of measurement has most commonly been used for measuring physical and chemical soil properties but the ability to pinpoint contaminants is improving, particularly with software designed for the job. How to Measure Soil Conductivity Measuring soil electrical conductivity is facilitated by two different types of sensors, a contact sensor and a non-contact sensor. Contact sensors work by making contact with soil to measure electrical conductivity directly. These types of instruments are most often used along the surface of a field to characterize the soil for agricultural purposes. Non-Contact Sensors Non-contact sensors, as the name implies, function without having to touch the soil directly. This method is based on the measurement of the change in mutual impedance between a pair of coils passed through the soil. Electricity is applied through the coils, which creates a magnetic field. Much like the way an induction motor operates, this magnetic field induces an electrical current in nearby materials that are magnetic. You can assess the level of current induced by measuring the impedance in the operating coils. Passing non-contact sensors down a borehole has been used effectively to establish geophysical properties such as the presence of clay (which may have highly conductive materials distributed through it) and water table levels. In cases where an area is known to have contamination, the identification of clay layers and groundwater distribution can help to estimate where 'plumes' of contamination might be contained orspread underground. In the case of a borehole test, water samples can be gathered directly from discrete depths to confirm the presence of various types of contaminants. [...]

LED Fluorescence Detectors and Fuel Fluorescence Detection (FFD)

Hydrocarbons: including gasoline, kerosene, diesel fuel, jet fuel, lubricating and hydraulic oils, and tars and asphalts contain Polycyclic Aromatic Hydrocarbons (PAH’s). Polycyclic Aromatic Hydrocarbons (PAH’s) distributed in soils and groundwater fluoresce when irradiated by ultraviolet light. Because different types of PAHs fluoresce at different wavelengths, each has its own fluorescence signature. Using an instrument that measures the intensity and wavelength of the fluoresced hydrocarbon enables the assessment of the hydrocarbons present. This makes UV Fluorescence a useful technology to use in characterizing surface, subsurface and groundwater hydrocarbon contamination. We call this Fuel Fluorescence Detection (FFD). What's the right fluorescence detector for you? Using handheld UV lights enables site technicians to establish the nature and distribution of contamination above ground. For surface spills such as what gathers along a shoreline or for surface based operations such as above ground tanks and pipes, this can be a useful place to start. For underground storage tanks a useful way to begin site characterization is with a subsurface probe. Engineers trying to establish the limits of the ‘plume’ or the depth of the contaminant as it travels underground. Plumes will extend outward, downward and upward depending upon factors such as the flow of groundwater and the confining layers of clay and rock. Leveraging the ability to generate and measure fluorescence underground requires a step up in technology. In the case of CPT, a UV light source is placed in the cone itself. Fiber-optic cables transmit the resulting fluorescence to the surface where the intensity and wavelength can be measured. Because of the efficiency of CPT, large and complex sites can be characterized quickly and efficiently. The data logs are available immediately to influence critical decision-making which can help to manage costs in the long term. For instance monitoring wells may need to be installed [...]

Why Are There So Many Kinds of CPT Rigs?

As you look through our website, you'll see that there are a number of different types of CPT Rigs. As you can imagine, they each have their purpose, or 'application'. In order to understand why different types of CPT Rigs exist, it's helpful to remember how CPT works in the first place. The goal of Cone Penetration Testing is to drive a hardened cone vertically into the the ground and to keep it moving at a specific rate of progress. The force that it takes to maintain the cone moving downward at a defined rate is an indicator of how hard the soil is at a given depth. The friction the cone sleeve encounters along the way gives us an indication of the make up of the soil. As you can imagine, as the cone progresses further downward and encounters different types of soils, sands, clays and rocks it can take a substantial amount of pressure to keep it moving! One of the first factors that influences the design of CPT Rigs is the maximum amount of pressure that will be required to perform a specific test, to a specific depth in a given geological area. As much as 20 tons of downward force may be required to perform a broad enough range of tests to make a given rig viable for a market. For every ton of downward pressure on the test cone through the rod system, you have to have a reaction force equal to this to keep the Rig from lifting up. This means that either the Rig has to be heavier than the maximum push force, plus a safety margin, or it needs to be anchored down in some way as to reliably resist the upward force generated by the test (or 'sounding'). Depending upon the [...]

See the Vertek CPT Lightweight Portable CPT Push System in Action!

At Vertek CPT we love to develop innovative, yet practical CPT solutions with real ROI. There are many situations where an ultra-mobile, yet reliable CPT push system makes a lot of sense. In areas where it is difficult to get rig-based CPT equipment into place, maybe due to the terrain, soil conditions or distance from the nearest road, a CPT system that can be carried and operated by a small crew makes sense. Maximize Your Soil Testing Service Vertek's 10 Ton Portable Cone Penetrometer Test (CPT) hydraulic load frame is the lightest, smallest, most portable hydraulic CPT unit available. The hydraulic power pack and the hydraulic cylinders are independent and coupled by hydraulic quick-disconnects. The aluminum twin cylinders and power pack weigh only 195 kg (430 lbs) and 160 kg (355 lbs) respectively. Even within this lightweight form-factor, the unit still pushes up to 10 tons, meaning that you can reach the depths necessary for many types of tests. After setting 4 sturdy augers with the included drive unit and hand tools as simple as a tape measure, you are ready to mount the unit and start pushing. You can see how easy transportation, set-up, operation and tear-down are here: [/fusion_youtube]

Attending CPT Symposium 2014 Las Vegas, Nevada

See The Vertek S4 Push System in Person! The 3rd International Symposium on Cone Penetration Testing will be held at the Mandarin Oriental hotel in Las Vegas, Nevada, May 12-14, 2014. The theme of the Symposium is the solution of geotechnical and geo-environmental problems using the Cone Penetration Test (CPT). We'll be at booth #1 and also setup outside with our new S4 Push System which is designed to be attached to a wide variety of equipment. Learn more about our entire line of products and data acquisition systems.

Using a Compaction Test to Determine Site Safety Standards

Compaction is an engineering term used to describe the ability of a soil type to be treated with mechanical energy and compressed such that air voids are removed. With individual grains compressed to remove air voids, it becomes more difficult for the soil being compressed to 'settle' further on its own. The strength of the soil in loads other than compression can be increased because the individual particles within the soil become interlocked and friction can become a more important function of the soil behavior. Compacted soil, because air spaces between the particles are reduced has lower hydraulic conductivity (passes water less easily under a given pressure). Why do a Compaction Test? Compaction can be important when high loads such as building foundations may cause a soil to settle over time causing shifting or even collapse. It can be valuable for soil that you want to retain in place, such as along an embankment or behind a retaining wall to be compacted. The compaction process, by increasing the friction in the compacted soil helps to maintain against horizontal slippage which can either result in a landslide off from an embankment or in higher pressure behind a retaining wall, causing it to bow outwards. Because compaction lowers hydraulic conductivity, it can be useful, or even essential in the functioning of earthen dams, drainage ditches and levees. A measurement of compaction is the change in density, or weight per unit volume increase after the soil in question is compacted. That's why sometimes 'compaction' is also called 'densification'. This is actually not a correct designation as 'densification' actually includes both 'compaction' which is described above as well as 'consolidation'. Consolidation involves fluid flow out of the soil being densified, such as when you are treating clay heavy soils. Water is squeezed out from [...]

Cone Penetration Test (CPT) Overview 101

Are you new to the Cone Penetration Testing (CPT) business? Or maybe you're looking to convert your operation to CPT? Wherever your interest is surfacing from, we have everything you need to know about expanding into the CPT business with confidence. What do I get from a Cone Penetration Test (CPT)? In case you're new to the Cone Penetration Testing business, CPT will collect important subsurface information from standard tests and then from there determine important business factors, such as, how to design foundations for structures or the composition of subsurface soils. The difference between this type of data collection and other competitors is the benefit CPT has for businesses. CPT can provide immediate, onsite information that is quick and accurate. Above all, onsite results can improve your business productivity; ultimately leading to a more efficient business process. If you had the chance to take a look at our Solutions Brief: Enter the Cone Penetration Business with Confidence, then you may have already taken a deep dive into the advantages of collecting subsurface information with a process that is more quick and efficient than other options. Businesses are choosing to use a CPT solution for many different reasons; whether for construction or government purposes, they all benefit from the same advantage: speedy collection and interpretation of data, a safe solution for operators and the environment, and the ability to adapt to different weather and soil conditions. We understand how intimidating it can be to enter a new business; large or small. That's why we are focused on delivering educational content that addresses all of your CPT needs and concerns. From topics on 'What is a Cone Test' to 'Mud Rotary Drilling vs. CPT,' it's important to consider pros and cons and different scenarios in order to make the right choice [...]

CPT Rigs: Types, Uses & Applications

If you're familiar with the CPT University then you may have had the chance to see our article: Why Are There So Many Kinds of CPT Rigs? As you may have read, there are many different rigs available; but depending upon the types of surface conditions or the terrain, one option may be more suitable for your project over another. Read on to take a deeper dive into a few different examples of CPT rigs, uses and applications. S4 CPT Push System The S4 is a robust and affordable push system that can be attached to many types of heavy equipment including ski steers, trailers, backhoes, and more. The S4 is revolutionary in many respects, for instance it provides 20 tons of CPT push capacity in a compact and affordable package. This agile, lightweight rig is only available from Vertek CPT and is one of the most inexpensive alternatives to the traditional rig. The system is equipped with full-systtem hydraulics giving you full operating control, as well as the ability to drive 2 Motorized Anchor Heads and all of the CPT system features you need to eliminate the need for external cylinders. There is no alternative to the S4 Push System that lets you enter the CPT business with confidence that you can prove out your business model before going 'all in'. CPT Track Rigs With fully equipped features and capabilities, CPT Track Rigs are available in light, medium and heavy configurations. These CPT rigs are designed to meet rigorous requirements and the demanding range of foundation work you are likely to encounter as your business grows. For certain geographical areas soft soils, boggy areas and changing environments demand a track rig. This means that you can immediately differentiate your services from the competition. CPT Track Rigs are super-pro. Track [...]

A Short Introduction into CPT and the ASTM Standards

If you have been thinking about expanding into the Cone Penetration Testing business but still need some more information to feel confident with your decision; or need further details to bring to your employer, you have come to the right place. This post is an introduction to the basics of CPT and how it correlates with the ASTM Standards to meet your needs and better serve your business. If this is the first time you have really considered entering the CPT business; CPT is the use of a hardened cone shape that is pushed into the ground to substantial depths for the process of collecting immediate onsite data. CPT has proven to be an inexpensive option that not only is safe and efficient but delivers accurate data at a faster rate. Not only is CPT an effective and inexpensive option for your drilling assignments, but it also meets the ASTM Standards, ensuring that it meets the standard of excellence (safe, quality, etc). CPT Data & ASTM Standards "ASTM International, formerly known as the American Society for Testing and Materials (ASTM), is a globally recognized leader in the development and delivery of international voluntary consensus standards. Today, some 12,000 ASTM standards are used around the world to improve product quality, enhance safety, facilitate market access and trade, and build consumer confidence" [ASTM]. To take a deeper dive into the value of ASTM Standards, take a look at this video: [/fusion_youtube]

In-Situ Soil Testing 101: The Different Types of Tests

In-situ soil testing is essential for gaining soil property information, measuring groundwater pressure, gathering moisture content data and other important data points, all in which can be safety-critical in a number of different instances. In today's post we are going to take a deep dive into a few different types of soil tests that can be performed in-situ. In-situ soil testing can be accomplished in a variety of different ways. Every soil test has its own place and benefit; however, the most accurate and thorough in-situ soil testing for determining a wide variety of technical attributes is Cone Penetration Testing (CPT). Just like everything else, determining what is best for your business is more efficient and effective once you have determined the pros and cons for every possible solution; in this case a testing solution. Options for In-Situ Soil Testing Procedures Here is a closer look at a few different options for performing an in-situ soil test: Standard Penetration Testing (SPT): This option is dynamic, low in cost and has been widely recognized as a simplified solution that provides useful information. While it's reasonably consistent with it's results in fine-grained sands it's not as consistent with coarse sands or clays; which can be difficult for gathering accurate data and analysis of soil conditions. For even more on Standard Penetration Testing, visit one of our previous posts that takes a closer look at SPT for your business. Dynamic Cone Penetrometer (DCP): A DCP manually lifts it's weight and drops into a cone that will then penetrate into the ground. It will record the number of mm per hit as well as gather an estimate of different soil properties, however it doesn't have as many capabilities as the CPT, and can only estimate certain properties. Cone Penetration Testing (CPT): This option collects [...]

Go to Top