Terracon Consulting Engineers Takes Delivery of 20 Ton CPT Track Rig

Cone penetration test rig leaves Vertek CPT's Randolph, VT facility. It can be a bit somber watching one of our CPT track rigs head out the door after spending a few months building the rig here in Vermont, but thankfully we get to work with our partners long after the sale to make sure they're successful in the field. This 20 ton cone pentration test track rig is headed to Terracon Consulting Engineers and Scientists of Olathe, Kansas. [/fusion_youtube]

Soil Quality in Geological Engineering

Agronomists, Civil Engineers, Geological Engineers and more will often talk about 'Soil Quality'. As a result, there can be varying definitions of what 'quality' soil means. That means that there are a wide variety of tests to determine 'Soil Quality'. What Does Soil Quality Mean for You? For the Agronomist, Soil Quality refers to the capacity of soil to provide a kind of function related to growing capacity. This will take into account the soils ability to support life as in its chemical properties (does it have enough nitrogen etc.), it's biological properties (does it have the right bio-system to support the production of certain types of crops), will it retain the right amounts of water, is it's grain size suitable for tilling etc. There are many tests that will help one to evaluate the agricultural viability of soils. For the Civil and Geological Engineer some of these tests might be valuable. For instance, in making recommendations in how to reclaim a 'brown field' (a site that was formerly industrial that is now being re-developed for other purposes) it can be useful to identify the level of ability of an area to support specific types of grasses. When performing earthworks, it is not uncommon to use plantings such as trees as part of the anchor system to help to hold berms and such in place. Knowing Soil Quality in this respect can help to support a good decision with respect to the structural support that a living ecosystem can bring. Generally though, Engineering types are after more specific physical properties in order to 'do the math' on how an engineered system will interact with the soil conditions that are present. This enables engineers to either recommend changing the systems in place (such as by excavating large quantities of soil out, [...]

Analyzing CPT Data

As we've noted in other posts, CPT provides a number of benefits over traditional methods of subsurface soil characterization. These benefits include: Traceability Reports from a specific sounding are easily traced back to the source data, and because CPT is a continuous process, data points in between those reported can be evaluated post-test. This is in contrast to geotechnical boring where individual samples need to be tracked and accounted for from the busy worksite to a remote lab and through to reports and documentation. This can be cumbersome and prone to errors. Immediacy Reports can be generated in near-real-time. This enables customers such as site owners or civil engineers to have visibility to the tests as they are occuring. Having immediacy means that as data is reported and interpreted, any retesting that should be done or any additional soundings that would be useful to clarify or validate data can be called for on the spot. Accuracy Because of the very large volume of soundings that have been done, important factors and relationships have been established that enable the raw CPT data to be translated into useful information. Additionally, as we've noted elsewhere, CPT leaves the soil being tested 'undisturbed' and therefore provides a more accurate assessment than other methods of soil characterization. CPT Data analysis and interpretation can be aided through the use of specialized software Two that our customers have had success with include DataForensics & Datagel. Using software to log, analyze and report your data provides a number of advantages. Traceability, immediacy and accuracy are improved. Additionally, efficiency and therefore your cost structure, benefit as well. With the right software you are able to accelerate your ability to serve customers both more quickly and more accurately. If you are entering or have recently started out in the CPT [...]

The Advantages and Disadvantages of Geotechnical Boring; Why CPT May be Your Better Option

As we noted in a previous post about Soil Quality, there are a wide range of reasons that soil needs to be tested. For some applications, it is important to get data about soil that is sub-surface, and in many cases getting data from deep under a site can be useful or essential. When most people imagine how you would gather data from soil that is deep underground, they imagine using a drilling rig of some kind. Sure enough, there are special kinds of boring tools that will let you drill deep into the ground and extract a sample of the soil at depth for analysis. Advantages & Disadvantages of Geotechnical Boring Using Geotechnical Boring, whether it be small-diameter or large-diameter equipment allows users to see the solid that is extracted. This can be useful for gaining an understanding of the sub-surface topology if a goal is to create a multi-dimensional map of the subsurface Geological conditions. There are significant disadvantages however to using Geotechnical Boring to obtain soil samples for testing. One disadvantage is that the operation of boring is for obtaining samples only, you can't gather data from the boring activity itself and therefore all of this investment in equipment, labor and time provides value only in that it presents a sample for testing. Another disadvantage is that the soil being sampled then needs to be tested using some type of laboratory equipment. This often means removing a large number of samples from the site, getting them safely in an organized way to a lab facility somewhere, hopefully nearby, and waiting for the lab results to come back. If there are apparent conflicts in data, or a particular part of the site needs more evaluation, the entire process needs to be started up from scratch again. Perhaps the [...]

The Application of Dynamic Cone Penetration Testing (DCPT)

Assessing the level of compaction of sub-surface soils can be essential to designing and building structures, particularly those subject to transient or cycling loads. A perfect example is roadways. If the soil beneath a roadway is not compacted sufficiently, then over time the cycling loads of passing traffic will compact the soil further, leading to surface failure such as large cracks, potholes and displaced pavement. Assessing the compaction of non-cohesive soils such as fine sands is a difficult challenge. As we've noted in other blog posts, removing a sample from the ground and sending it to a lab is not only time consuming and expensive, but can be highly inaccurate in non-cohesive soils because the samples by necessity are disturbed from their sub-surface condition. The Dynamic Cone Penetrometer Test (DCPT) is one of many forms of in-situ soil characteristic tests that are designed to assess soil density. It shares some characteristics of both SPT and CPT testing, which enables it to provide a useful and in the right application can deliver a complementary data set and is less expensive and troublesome than Nuclear Density testing. The Standard Penetration Test (SPT) is done by using a sample tube which has thick walls to prevent deformation during the test. To conduct a test, a borehole is drilled to a specified depth. The sample tube is driven into the bottom of the borehole using a drop hammer of a defined weight dropped a defined distance. The number of blows (N) needed to drive the sample tube 6, 12 and 18 inches is recorded. The SPT provides a rough indication of the soil density at depth. As noted in previous posts (link here), getting accurate data for soil density can be a complex challenge. SPT provides an estimate but is not as accurate as [...]

Towable CPT Trailer – Push System on Wheels!

New - Mount an S4 CPT Push System on equipment or a trailer! Customer response to our new S4 Push System has been very impressive. The most affordable and flexible 20 ton push system available has made CPT newly accessible to a variety of service providers around the world without the need for large dedicated vehicles. In keeping with our history of cone penetration innovation we'd proud to show off our latest improvement to the S4 Push System: Towability. That's right, the S4 can now be purchased attached to our custom trailer enabling it to be driven from job site to job site behind any full size pick-up truck. [/fusion_youtube]

New Geotechnical Exploration Firm in Southeast US: PalmettoINSITU

Vertek S4 Push System In Action Extracting underground data to determine soil parameters in order to efficiently provide foundation requirements Vertek customer Michael Cox has launched PalmettoINSITU, LLC, a geotechnical exploration firm specializing in extracting and presenting more exact data from coastal, southeastern, and southwestern soils prior to development and construction projects. Geotechnical engineers will contract with PalmettoINSITU to extract underground data to determine soil parameters in order to efficiently provide foundation requirements for: Bridges, multi-story buildings, private residences, nuclear power plants, wind turbines, cellular communication towers, municipal water tanks, water treatment facilities, sinkholes, profiling top-of-rock, directional boring, and many other critical applications prior to development and construction. About Michael Cox: Michael Cox spent 13 years with S&ME, a global Top-100 engineering firm before launching PalmettoINSITU in June of 2014. Michael Cox graduated from Florida Institute of Technology with an MS in Information Technology and a BS in Computer Information Systems. Cox also earned an AS in Civil Engineering Technology, including AutoCAD and Surveying certificates from Trident Technical College in Charleston. Michael Cox is known as the "Indiana Jones" of capturing soil data in the geotechnical engineering space, due to his reputation and innovation for getting in and out of some of the most challenging site locations. Before beautiful residences, commercial buildings, or major facilities are built, their raw land is typically rough, wooded, wet, or otherwise a challenge to physically enter in order to begin testing the soil. Vertek's S4 Push System offers maximum flexibility to access these site locations due to application on a variety of equipment. Michael Cox earned over a decade of geotechnical experience working on the following projects: Norfolk Naval Shipyard (Virginia), Andrews Air Force Base (Maryland), The Boeing Facility (South Carolina), The Bellefonte Nuclear Station (Alabama), Robinson Nuclear Power Plant (South Carolina), The Google [...]

An Introduction to Soil Compaction Testing

In the construction of high load structures such as dams, paved roadways and construction projects that rely on the stability of embankments; soil compaction is used to increase soil strength. Loose soil can be compacted by using mechanical equipment to remove air-voids, thereby densifying the soil and increasing it's dry unit weight. There are a variety of different benefits to soil compaction, including: prevention of soil settlement and frost damage, increased ground stability, reduced hydraulic conductivity and mitigating undesirable settlement of structures, such as paved roads, foundations and piping. Below you will find a few different examples of how a soil compaction test can be performed. Standard Proctor Compaction Test: Standard Proctor Compaction Testing can be performed in a lab. The testing first determines the maximum density achievable for the soil and uses it as a reference for field testing. It also is effective for testing the effects of moisture on the soil's density. For soil with higher densities a Modified Proctor Compaction Test which uses higher values will be necessary. Materials Needed: 1/30 cubic ft. mold 5.5 lb. hammer 12" drop 3 layers of soil 25 blows Obtain layered soil sample (via our VTK Soil Sampler if equipped) Determine the weight of the Proctor mold with the base and the collar extension Assemble the compaction tool Place soil in the mold in 3 layers Compact the soil with 25 well distributed blows of the hammer Carefully detach the collar extension and base without distributing the soil Determine the weight of the Proctor mold and the soil Oven dry the soil for 12 hours to determine the moisture content Compaction energy can be calculated with this test by using this formula: ((#blows) x (#layers of soil) x (weight of hammer) x (height drop)) / mold volume Field Tests: Field Tests [...]

CPT Testing, Part 1: Introduction to the Basic Concepts

If you have ever been curious about the Cone Penetration Testing (CPT) business, you have come to the right place. In today's post we are going to take a dive into the basic concepts and what expanding into CPT can do for your engineering business. Geotechnical Engineers and CPT Testing Geotechnical engineering is a branch of civil engineering that focuses on the engineering behavior of earth materials. Geotechnical engineers have been using Cone Penetration Testing (CPT) for over 40 years to assist in the design and construction of foundations, embankments and other structures. The standardized CPT works by pushing a 55-60 degree cone into the ground at a rate of 1-2 cm per second and is used to identify the conditions in the upper 100 feet of the subsurface. The data compiled from this testing is valuable for assessing the subsurface stratigraphy associated with soft materials, discontinuous lenses, organic materials, potentially liquified materials (such as sand, silt and granule gravel), and predicting landslides or ground settling. The cone resistance in conjunction with the friction ratio can also be used to determine soil types. While these results are often more accurate when referring to textbook soils, there are some major benefits to utilizing CPT techniques as opposed to drilling. In fact, there are a number of different advantages of CPT, including: economically friendly testing, as well as its ability to perform at a fast rate and effective in characterizing large volumes of soil without having to do a large number of laboratory testing. CPT is also accurate, eliminating the possibility of disturbances to soil samples and sample storage. By leveraging CPT results, engineers can determine the best methods for several aspects of design and construction projects. Detect lenses, thin layers and sand stringers. Evaluate the thickness and extent of compressible soil [...]

Ensure Properties are Accurate Using Sediment Cone Testing

Obtaining a representative and undisturbed sample of cohesive sedimentary soil, such as sand, is very difficult and often times impossible. Because of this, determining the properties of sandy or fine grained soils is best done in-situ, making Cone Penetration Testing (CPT) one of the best testing methods for measuring mechanical properties of sediment. Sediment Cone Testing When conducting cone testing of sediment the horizontal stress and sediment density are the most influential parameters on the cone tip resistance. The cone penetration tip resistance is influenced by the soil properties ahead and below the tip. If you're dealing with a sand layer that is less than 70 cm., it's important to consider what types of stratification it is located between. For example, if it's located between deposits of soft clay the CPT may not reach it's full value within the sand layer, meaning the relative density of the sand may be underestimated. By monitoring the CPT pore pressures, these influencers can be identified. The substantial effects of soil compressibility on CPT measurements are considered to be an advantage if they are identified correctly. Compressibility is one of the key factors to successfully determining soil properties and classifying soil types. Using CPT, relative density and friction measurements soils can be broken up into high, medium and low compressibility. By classifying sediment compressibility during cone testing you can better measure the particular sediment properties. Sand for example, originates from quartz or silica; it contains hard materials, does not have cleavage planes and is resistant to weathering. Certain sands, for example siliceous sand, contain trace portions of other minerals, like chlorite. Compared to other types of soil, the compressibility of sand is most complicated because it is dependent on several different factors, including: grain size and shape, particle crush-ability, angularity, grain mineralogy, void ratio, [...]

Go to Top